天然气地球科学

• 非常规天然气 • 上一篇    下一篇

碎软低渗煤层顶板水平井分段压裂裂缝扩展规律及控制机制

巫修平,张群   

  1. 中煤科工集团西安研究院有限公司,陕西 西安 710054
  • 收稿日期:2017-07-01 修回日期:2017-09-28 出版日期:2018-02-10 发布日期:2018-02-10
  • 作者简介:巫修平(1981-),男,江苏句容人,副研究员,博士,主要从事煤层气勘探与开发技术研究.E-mail:wuzxiuping@163.com.
  • 基金资助:

    “十三五”国家科技重大专项项目(编号:2016ZX05045002-004);中煤科工集团西安研究院有限公司科技创新基金项目(编号:2015XAYMS37)联合资助.

Research on controlling mechanism of fracture propagation of multi-stage hydraulicfracturing horizontal well in roof of broken soft and low permeability coal seam

Wu Xiu-ping,Zhang Qun   

  1. Xi’an Research Institute,China Coal Technology & Engineering Corporation,Xi’an 710054,China
  • Received:2017-07-01 Revised:2017-09-28 Online:2018-02-10 Published:2018-02-10

摘要:

碎软低渗煤层的煤层气地面抽采,多年来一直是制约我国煤层气产业化发展和煤矿瓦斯灾害防治工作的技术瓶颈,也是世界性技术难题。通过建立表征碎软低渗煤层顶板水平井分段煤层气抽采模式的地质—工程模型,采用数值模拟的方法,开展了顶板水平井压裂裂缝扩展规律的研究,揭示了碎软低渗煤层顶板水平井压裂裂缝垂向上不仅完全能穿层进入沟通煤层,而且由于裂缝在顶板岩层中的脆性主导性扩展造成“拉扯”作用带动煤层中的裂缝共同横向扩展,在碎软煤层中形成的裂缝比直接对碎软煤层压裂形成的裂缝要长的多,压裂增产效果更好。同时,现场工程试验也验证了煤层顶板水平井压裂对碎软煤层的增产改造效果。我国晚古生代煤田碎软低渗煤层分布广泛,高瓦斯突出矿井众多。该研究成果对于这类煤层的煤矿区煤层气地面抽采,尤其是突出煤层的掘进煤巷条带瓦斯地面快速预抽和区域瓦斯消突,瓦斯灾害防治,具有借鉴和指导作用,应用前景良好。

关键词: 碎软低渗煤层, 顶板岩层, 水平井, 分段压裂, 裂缝扩展

Abstract:

Coalbed methane drainage of broken soft and low permeability coal seam from ground surface has always been a technical bottleneck that prevents CBM industrialization and coal mine gas disaster prevention and control work for a long time.It is also a worldwide technical problem.Based on the establishment of coalbed methane mode of multi-stage hydraulic fracturing horizontal well in roof strata of broken soft and low permeability coal seam,applying numerical simulation method,the mechanism of fracture propagation of multi-stage hydraulic fracturing and horizontal wells in roof strata of broken soft and low permeability coal seam was studied.It is revealed that the hydraulic fractures not only can grow from the high stress value of roof strata towards and throughout lower stress value of broken soft and low permeability coal seam,and also the length of fractures formed in underlying broken soft and low permeability coal seam is longer than that of directly fractured in broken soft and low permeability coal seam due to fractures propagation in the direction of length in relatively friable roof strata producing tear effect on broken soft and low permeability coal seam at the same time of fractures propagation of the mode of multi-stage hydraulic fracturing horizontal well in roof strata of broken soft and low permeability coal seam.Fracturing effect of multi-stage hydraulic fracturing horizontal well in roof strata of broken soft and low permeability coal seam was verified in field.The distribution of broken soft and low permeability coal seams in Late Paleozoic in China is widely distributed,which are mostly high gas outburst coal mine.The research results of this paper can be used for the CBM drainage in this kind of coal seam,in particular,which can be used as a reference and guidance for the rapid coal gas pre-pumping in the heading of coal seam strip of outburst coal seams,regional gas outburst control and gas disaster prevention.The drainage model has a good prospect of application.

Key words: Broken soft and low permeable coal seam, Roof strata, Horizontal well, Multi-stage hydraulic fracturing, Fracture propagation

中图分类号: 

  • TE132.2

[1]Zhang Qun.Strategie thinking on coal mine methane development in China[J].China Coal,2007,33(11):9-11.
张群.关于我国煤矿区煤层气开发的战略思考[J].中国煤炭,2007,33(11):9-11.
[2]Zhao Qingbo.Coalbed Methane Geology and Development Technology[M].Beijing:Petroleum Industry Press,1999.
赵庆波.煤层气地质与勘探技术[M].北京:石油工业出版社,1999.
[3]Ning Ning,Wang Hongyan,Yong Hong,et al.The unconventional natural gas resources and exploitation technologies in China [J].Natural Gas Industry,2009,29(9):9-12.
宁宁,王红岩,雍洪,等.中国非常规天然气资源基础与开发技术[J].天然气工业,2009,29(9):9-12.
[4]Song Yan,Zhang Xinmin,Liu Shaobo.Progress in the basic studies and exploration and development techniques of coalbed methane in China [J].Natural Gas Industry,2005,25(1):1-7.
宋岩,张新民,柳少波.中国煤层气基础研究和勘探开发技术新进展[J].天然气工业,2005,25(1):1-7.
[5]Wang Donghao,Guo Dali,Ji Yong,et al.Stimulation measures and problems in coalbed methane [J].Coal,2008,17(12):33-35.
王东浩,郭大立,计勇,等.煤层气增产措施及存在的问题[J].煤,2008,17(12):33-35.
[6]Liu Guobi,Zhang Huirong.Exploration,development and stimulation techniques of coalbed gas[J].Xinjiang Petroleum Geology,1994,15(1): 87-91.
刘国壁,张惠蓉.煤层气勘探开发和增产技术[J].新疆石油地质,1994,15(1): 87-91.
[7]Li Yinchuan.Petroleum Production Engineering[M].Beijing:Petroleum Industry Press,2009:204-207.
李颖川.采油工程[M].北京:石油工业出版社,2009:204-207.
[8]Wang Ganyao,Feng Qingtai,Li Ping.Research on mining technology of coalbed gas through staged fracturing horizontal well along the roof of coal seam[J].Journal of Shanxi Datong Univorsity:Natural Science,2013,29(4):68-70.
王赶耀,丰庆泰,李平.沿煤层顶板水平井分段压裂煤层气开采技术研究[J].山西大同大学学报:自然科学版,2013,29(4):68-70.
[9]Wu Xiuping.Research on Control Mechanism of Fracture Propagation of Multi-stage Hydraulic Fracturing Horizontal Well in Roof of Broken Soft and Low Permeable Coal Seam[D].Beijing:China Coal Research Institute,2017.
巫修平.碎软低渗煤层顶板水平井分段压裂裂缝扩展规律及机制研究[D].北京:煤炭科学研究总院,2017.
[10]Cai Meifeng,He Manchao,Liu Dongyan.Rock Mechanics and Engineering[M].Beijing:Science Press,2002.
蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
[11]Liu Jianzhong,Li Ziqiang,Cao Xinling.Determination of min-principal stress using confining pressure-fractures propagation in hydraulic fracturing[J].South China Journal of Seismology,1986,6(2):63-69.
刘建中,李自强,曹新玲.水压致裂过程中的裂缝扩展-用封闭压力确定最小水平主应力[J].华南地震,1986,6(2):63-69.

[1] 黄雨,李晓平,谭晓华. 三重介质复合气藏水平井不稳定产量递减动态分析[J]. 天然气地球科学, 2018, 29(8): 1190-1197.
[2] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[3] 吕志凯,贾爱林,唐海发,刘群明,王泽龙. 大型致密砂岩气藏水平井产能评价与新认识[J]. 天然气地球科学, 2018, 29(6): 873-879.
[4] 翁定为,付海峰,包力庆,胥云, 梁天成,张金. 水平井平面射孔实验研究[J]. 天然气地球科学, 2018, 29(4): 572-578.
[5] 卢文涛,李继庆,郑爱维,梁榜,张谦,杨文新. 涪陵页岩气田定产生产分段压裂水平井井底流压预测方法[J]. 天然气地球科学, 2018, 29(3): 437-442.
[6] 梁榜,李继庆,郑爱维,卢文涛,张谦. 涪陵页岩气田水平井开发效果评价[J]. 天然气地球科学, 2018, 29(2): 289-295.
[7] 王业众,段国彬,桑宇,彭华,张林,周长林,余良志,陈伟华. 衬管完井水平井新型布酸技术研究与应用——以安岳气田磨溪构造龙王庙组气藏为例[J]. 天然气地球科学, 2017, 28(8): 1264-1268.
[8] 严谨,何佑伟,史云清,郑荣臣,程时清,于海洋,李鼎一. 致密气藏水平井压裂缝不均匀产气试井分析[J]. 天然气地球科学, 2017, 28(6): 839-845.
[9] 王志荣,贺平,郭志伟,陈玲霞,徐培远. 水力压裂条件下“三软”煤层压裂渗透模型及应用[J]. 天然气地球科学, 2017, 28(3): 349-355.
[10] 庞强, 冯强汉,马妍,张昱煜,彭雪花. 三维地质建模技术在水平井地质导向中的应用——以鄂尔多斯盆地苏里格气田X3-8水平井整体开发区为例[J]. 天然气地球科学, 2017, 28(3): 473-478.
[11] 贾建称,陈晨,董夔,吴艳,吴敏杰. 碎软低渗煤层顶板水平井分段压裂高效抽采煤层气技术研究[J]. 天然气地球科学, 2017, 28(12): 1873-1881.
[12] 丁景辰. 高含水致密气藏水平井稳产原因分析及启示——以鄂尔多斯盆地大牛地气田为例[J]. 天然气地球科学, 2017, 28(1): 127-134.
[13] 胡永全,蒲谢洋,赵金洲,杨文露. 页岩气藏水平井分段多簇压裂复杂裂缝产量模拟[J]. 天然气地球科学, 2016, 27(8): 1367-1373.
[14] 马志欣,付斌,王文胜,罗川又,张吉,张春阳,魏千盛. 基于层次分析的辫状河储层水平井地质导向策略[J]. 天然气地球科学, 2016, 27(8): 1380-1387.
[15] 刘群明,唐海发,冀光,孟德伟,王键. 苏里格致密砂岩气田水平井开发地质目标优选[J]. 天然气地球科学, 2016, 27(7): 1360-1366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!