天然气地球科学

• 天然气勘探 • 上一篇    下一篇

利用纵横波速度法预测泥页岩脆性矿物指数

鲍祥生,谈迎,吴小奇,郑红军   

  1. 1.广东石油化工学院,广东 茂名 525000;
    2.广东省非常规能源工程技术研究中心,广东 茂名 525000;
    3.江苏省有色金属华东地质勘查局,江苏 南京 210007;
    4.中国石化石油勘探开发研究院无锡石油地质研究所,江苏 无锡 214126;
    5.国土资源部南京地质矿产研究所,江苏 南京 210016
  • 收稿日期:2017-04-17 修回日期:2017-11-19 出版日期:2018-02-10 发布日期:2018-02-10
  • 作者简介:鲍祥生(1977-),男,江苏姜堰人,高级工程师,博士,主要从事常规和非常规能源勘探技术研究.E-mail:3817414@qq.com
  • 基金资助:

    广东省“扬帆计划”引进紧缺拔尖人才项目(编号:916022);创新强校特色创新项目(编号:650471;660053);广东石油化工学院人才引进项目(编号:650125);茂名市科技计划项目(编号:917304)联合资助.

Prediction of brittle mineral index by using P-wave and S-wave velocity method

Bao Xiang-sheng,Tan Ying,Wu Xiao-qi,Zheng Hong-jun   

  1. 1.Guangdong University of Petrochemical Technology,Maoming 525000,China;
    2.Guangdong Research Center for Nonconventional Energy,Maoming 525000,China;
    3.East China Mineral Exploration and Development Bureau for Nonferrous Metals,Nanjing 210007,China;
    4.Wuxi Research Institute of Petroleum Geology,Petroleum Exploration &Production Research Institute,Sinopec,Wuxi 214126,China;
    5.Nanjing Institute of Geology and Mineral Resources,Ministry of Land and Resources,Nanjing 210016,China
  • Received:2017-04-17 Revised:2017-11-19 Online:2018-02-10 Published:2018-02-10

摘要:

脆性矿物指数是用来优选页岩气甜点区的重要参数,针对目前普遍采用的基于弹性参数预测脆性矿物指数的Rickman法地区适应性差的问题,提出了一种纵横波速度预测方法。该方法以黏土矿物和脆性矿物弹性参数为基础,并基于Wyllie方程推导而形成的一种脆性矿物指数预测方法。该方法预测脆性矿物指数仅需要考虑纵波和横波速度参数,方法简单且具有明确的物理学基础和明确的地质含义。在四川盆地某地区S井的应用表明,该方法的预测精度优于Rickman方法,所以纵横波速度法能够有效指导研究区的脆性矿物指数预测。

关键词: 纵横波速度法, 脆性矿物指数, Rickman法, Wyllie方程, 页岩气甜点区

Abstract:

Brittleness index is an important parameter to select shale gas sweet spot.In view of the poor adaptability of Rickman method,which is widely used to predict brittle mineral index based on elastic parameters,a P-wave and S-wave velocity method for prediction is proposed.The brittle mineral index prediction method is derived based on the Wyllie equation,in which some elastic parameters,such as clay minerals and brittle minerals,are needed to be considered.This method only needs to consider the parameters of P-wave and S-wave in predicting brittle mineral index,which is simple and has a clear physical basis and clear geological meaning.The application in Well S in a certain area of Sichuan Basin shows that this method has higher prediction accuracy than the Rickman method.Therefore,the P-wave and S-wave velocity method can effectively guide the prediction of the brittle mineral index in the study area.

Key words:
P-wave and S-wave velocity method,
Brittle mineral index, Rickman method, Wyllie equation, Shale gas dessert area

中图分类号: 

  • TE132.2

[1]Zhang Jinchuan,Xue Hui,Zhang Deming,et al.Shale gas and its reservoiring mechanism[J].Geoscience,2003,17(4):466.
张金川,薛会,张德明,等.页岩气及其成藏机理[J].现代地质,2003,17(4):466.
[2]Zhang JinChuan,Jin Zhijun,Yuan Mingsheng.Reservoiring mechanism of shale gas and its distribution[J].Natural Gas Industry,2004,24(7):15-18.
张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18.
[3]Zou Caineng,Tao Sizhen,Hou Lianhua,et al.Unconventional Petroleum Geology[M].Beijing:Geological Publishing House,2014:287-293.
邹才能,陶士振,侯连华,等.非常规油气地质学[M].北京:地质出版社,2014:287-293
[4]Xiao Gang,Bai Yuhu,Cai Changyu.Key Technical Progress of Shale Oil and Gas Development[M].Wuhan:Wuhan University Press,2015:217-219.
肖钢,白玉湖,蔡长宇.页岩油气开发关键技术进展[M].武汉:武汉大学出版社,2015:217-219.
[5]Jiang Huaiyou,Ju Binshan,Li Zhiping,et al.Study on the status of world shale gas resources[J].Chinese and Foreign Energy,2014,19(3):14-22.
江怀友,鞠斌山,李治平,等.世界页岩气资源现状研究[J].中外能源,2014,19(3):14-22.
[6]Wu Bin,Xiao Shihong.Brittle mineral index calculation method and its significance for shale gas development[J].Journal of Henan Science and Technology,2014,5(10):56-70.
吴斌,肖世洪.脆性矿物指数计算方法及对页岩气开发的意义[J].河南科技,2014,5(10):56-70.
[7]Li Changwei,Tao Shizhen,Dong Dazhong,et al.Comparison of formation condition of shale gas between domestic and abroad and favorable areas evaluation[J].Natural Gas Geoscience,2015,26(5):986-1000.
李昌伟,陶士振,董大忠,等.国内外页岩气形成条件对比与有利区优选[J].天然气地球科学,2015,26(5):986-1000.
[8]Zhao Jinzhou,Ren Lan,Hu Yongquan.Analysis of controlled factors of fracture cracks in shale reservoir[J].Journal of Southwest Petroleum University:Science & Technology Edition,2013,35(1):1-7.
赵金州,任岚,胡永全.页岩储层压裂缝成网延伸的受控因素分析[J].西南石油大学学报:自然科学版,2013,35(1):1-7.
[9]Liao Dongliang,Xiao Lizhi,Zhang Yuanchun.Evaluation model for shale brittleness index based on mineral content and fracture toughness[J].Petroleum Drilling Techniques,2014,42(4):37-41.
廖东良,肖立志,张元春.基于矿物组分与断裂韧度的页岩地层脆性指数评价模型[J].石油钻探技术,2014,42(4):37-41.
[10]Rickman R,Mullen M,Petre E,et al.A Practical Use of Shale Petrophysics for Stimulation Design Optimization:All Shale Plays are not Clones of the Barnett shale[R].SPE 115258,2008.
[11]Papanastasiou P,Atkinson C.TheBrittleness Index in Hydraulic Fracturing[R].ARMA 15-489,2015.
[12]Mathia E,Ratcliffe K,Wright M.Brittleness Index-a Parameter to Embrace or Avoid?[R].URTeC:2448745,2016.
[13]Huang Junping,Zhang Zhisheng,Yang Zhanlong,et al.Dense rock mineral composition content and brittleness index multiple regression quantitative prediction[J].Xinjiang Petroleum Geology,2016,37(3):346-350.
黄军平,张智盛,杨占龙,等.致密岩石矿物组分含量及脆性指数多元回归定量预测[J].新疆石油地质,2016,37(3):346-350.
[14]Shi X,Liu G,Jiang S,et al.Brittleness index prediction from conventional well logs in unconventional reservoirs using artificial intelligence[C].IPTC-18776-MS,2016:1-13.
[15]Hilterman F.Seismic Amplitude Interpretation[M].Gsw Books,2001.
[16]Lu Jimeng,Wang Yonggang.The Principal of Seismic Exploration[M].Wuhan:China Petroleum University Press,2014.
陆基孟,王永刚.地震勘探原理[M].武汉:中国石油大学出版社,2014.
[17]Li Lin.Research on the Shear Wave Velocity Prediction Method Based on Petrophysics Thoery[D].Xi’an:Northwestern University,2010.
李林.基于岩石物理理论的横波速度预测方法研究[D].西安:西北大学,2010.
[18]Song Haibin,Song Linxiu,Wu Nengyou,et al.Geophysical researches on marine gas hydrates(Ⅰ):physical properties[J].Advances in Geophysics,2001,16(2):118-126.
宋海斌,松林修,吴能友,等.海洋天然气水合物的地球物理研究(Ⅰ):岩石物性[J].地球物理学进展,2001,16(2):118-126.

[1] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[2] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[3] 秦胜飞,李金珊,李伟,周国晓,李永新. 川中地区须家河组水溶气形成及脱气成藏有利地质条件分析[J]. 天然气地球科学, 2018, 29(8): 1151-1162.
[4] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[5] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[6] 林伯韬,陈渊,陈勉,金衍,蒋峥. 多峰孔径分布拟合模型在页岩孔隙结构分析中的应用[J]. 天然气地球科学, 2018, 29(3): 397-403.
[7] 巫修平,张群. 碎软低渗煤层顶板水平井分段压裂裂缝扩展规律及控制机制[J]. 天然气地球科学, 2018, 29(2): 268-276.
[8] 单衍胜,毕彩芹,迟焕鹏,王福国,李惠. 六盘水地区杨梅树向斜煤层气地质特征与有利开发层段优选[J]. 天然气地球科学, 2018, 29(1): 122-129.
[9] 赵一民,陈强,常锁亮,田忠斌,桂文华. 基于边界要素二分的煤层气封存单元分类与评估[J]. 天然气地球科学, 2018, 29(1): 130-139.
[10] 严谨,何佑伟,史云清,郑荣臣,程时清,于海洋,李鼎一. 致密气藏水平井压裂缝不均匀产气试井分析[J]. 天然气地球科学, 2017, 28(6): 839-845.
[11] 陈术源,秦勇. 河北省北部页岩样品纳米级孔隙结构及其影响因素[J]. 天然气地球科学, 2017, 28(6): 873-881.
[12] 陈金明,李贤庆,祁帅,高文杰,孙可欣. 煤结构演化与生气过程关系研究[J]. 天然气地球科学, 2017, 28(6): 863-872.
[13] 朱学申,梁建设,柳迎红,王存武,廖夏,郭广山,吕玉民. 煤层气井产水影响因素及类型研究——以沁冰盆地柿庄南区块为例[J]. 天然气地球科学, 2017, 28(5): 755-760.
[14] 申建,张春杰,秦勇,张兵. 鄂尔多斯盆地临兴地区煤系砂岩气与煤层气共采影响因素和参数门限[J]. 天然气地球科学, 2017, 28(3): 479-487.
[15] 张廷山,何映颉,杨洋,伍坤宇. 有机质纳米孔隙吸附页岩气的分子模拟[J]. 天然气地球科学, 2017, 28(1): 146-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!