天然气地球科学

• 非常规天然气 • 上一篇    下一篇

基于边界要素二分的煤层气封存单元分类与评估

赵一民,陈强,常锁亮,田忠斌,桂文华   

  1. 1.太原理工大学矿业工程学院,山西 太原 030024;
    2.煤与煤系气地质山西省重点实验室,山西 太原 030024;
    3.山西省煤炭地质物探测绘院,山西 晋中 030600;
    4.山西山地物探技术有限公司,山西 晋中 030600
  • 收稿日期:2017-06-20 修回日期:2017-09-20 出版日期:2018-01-10 发布日期:2018-01-10
  • 作者简介:赵一民(1990-),男,山西忻州人,硕士研究生,主要从事煤层气地球物理勘探研究.E-mail:767338446@qq.com.
  • 基金资助:

    山西省煤层气成藏模式与储层评价之子课题三“煤层气富集有利区的地球物理预测”项目(编号:MQ2014-01)资助.

Classifiable and evaluative method of coal-bed methane storage unit based on binary elements dichotomy

Zhao Yi-min,Chen Qiang,Chang Suo-liang,Tian Zhong-bin,Gui Wen-hua   

  1. 1.College of Mining Engineering,Taiyuan University of Technology,Taiyuan 030024,China;
    2.Shanxi Key Laboratory of Coal and Coal Measure Gas Geology,Taiyuan 030024,China;
    3.Shanxi Provincial Coal Geological,Geophysical Prospecting,Surveying and Mapping Institute,Jinzhong 030600,China;
    4.Shanxi Shandi Geophysical Prospecting Technology Co.Ltd.,Jinzhong 030600,China
  • Received:2017-06-20 Revised:2017-09-20 Online:2018-01-10 Published:2018-01-10

摘要:

为有效预测古县区块煤层气富集有利区,基于煤层气封存单元的地质理念,讨论了煤层气封存单元边界构成要素的识别参数,提出了基于单元边界要素二分的煤层气封存单元分类与评价方法。在地震地质综合解释成果的基础上,从构造、沉积、岩性、水文和物性5个方面,对研究区太原组9+10号煤层进行了煤层气封存单元边界识别及单元分类,共解释5个大类、22个小类、43个煤层气封存单元。基于单元构成地质要素对煤层气富集的影响,将识别出的单元划分为煤层气富集有利、较有利、较不利和不利4类。经已有煤田钻井瓦斯含量数据及新实施的5口探井煤层气含量测试成果验证,表明了该方法的有效性及合理性。

关键词: 煤层气, 封存单元, 地球物理, 边界要素, 二分法

Abstract:

In order to effectively predict the favorable area of CBM enrichment in the Guxian block,this paper discusses the identification parameters of the boundary elements of the coal-bed methane storage unit from the geological concept of the CBM storage unit,classification and evaluation method of coal-bed methane storage unit based on binary elements of element boundary is proposed.On the basis of comprehensive interpretation of seismic geology,the CBM storage units were identified and classified by aspects of structure,sedimentary,lithology,hydrology and physical properties.A total of 5 categories,22 small categories,and 43 CBM storage units were given.The identified units were divided into coal-bed methane enrichment,favorable,relatively unfavorable and unfavorable based on the influence of geological elements on coal-bed methane enrichment.The gas content data of the existing coal mine drilling and the test results of coal-bed methane of 5 newly implemented exploration wells demonstrates the method is effective and reasonable.

Key words: Coal-bed methane, Storage units, Geophysical technique, Block boundary, Dichotomy

中图分类号: 

  • TE132.2

[1]Qin Yong,Xiong Menghui,Yi Tongsheng,et al.On unattached multiple superposed coal-bed methane system:In a case of the Shuigonghe Syncline,Zhijin-Nayong Coalfield,Guizhou[J].Geological Review,2008,54(1):65-69.秦勇,熊孟辉,易同生,等.论多层叠置独立含煤层气系统——以贵州织金—纳雍煤田水公河向斜为例[J].地质评论,2008,54(1):65-69.
[2]Zhao Qinbo,Sun Fenjin,Li Wuzhong,et al.Geological Theory and Practice of Coalbed Methane Exploration and Development[M].Beijing:Petroleum Industry Press,2011:10-25.赵庆波,孙粉锦,李五忠,等.煤层气勘探开发地质理论与实践[M].北京:石油工业出版社,2011:10-25.
[3]Marroquín I D,Hart B S.Seismicattribute-based characterization of coalbed methane reservoirs:An example from the Fruitland,San Juan Basin,New Mexico[J].AAPG Bulletin,2004,88(11):1603-1621.
[4]Peng Suping,Du Wengfeng,Yin Caiyun,et al.High abundance coalbed methanerich region geophysical identification[J].Journal of China Coal Society,2014,29(8):1398-1430.彭苏萍,杜文凤,殷裁云,等.高丰度煤层气富集区地球物理识别[J].煤炭学报,2014,39(8):1398-1403.
[5]Peng S P,Chen H J,Yang R Z,et al.Factors facilitating or limiting the use of AVO coalbed methane[J].Geophysics,2006,71:49-56.
[6]Peng S P,GaoY F.Study on the AVO f-orward modeling of coal bearing strata[J].Chinese Bulletin Science,2005,50(s):151-158.
[7]Peng Suping,Gao Yufeng,Yang Ruizhao,et al.Theory and application of AVO for detection of coal-bed methane:A case from the Huainan Coalfield[J].Chinese Journal of Geophysics,2005,48(6):1475-1486.彭苏萍,高玉峰,杨瑞召,等.AVO探测煤层瓦斯富集的理论探讨与初步实践——以淮南煤田为例[J].地球物理学报,2005,48(6):1475-1486.
[8]Chen Xinping,Huo Quanming,Lin Jiandong,et al.The relation between CBM content and the elastic parameters of CBM reservoirs:Reasoning and initial probing[J].Chineses Journal of Geophysics,2013,56(8):2837-2848.陈信平,霍全明,林建东,等.煤层气储层含气量与其弹性参数之间的关系——思考与初探[J].地球物理学报,2013,56(8):2837-2848.
[9]Cui Ruofei,Chen Tongjun,Qian Jin,et al.CBM(gas) seismic prospecting technology[J].Coal Geology of China,2012,24(6):48-56.崔若飞,陈同俊,钱进,等.煤层气(瓦斯)地震勘探技术[J].中国煤炭地质,2012,24(6):48-56.
[10]Yang Shuangan,Ning Shunian,Zhang Huixing,et al.Research achievements of forecasting gas using three-dimensional seismic exploration[J].Journal of China Coalsociety,2006,31(3):334-336.杨双安,宁书年,张会星,等.三维地震勘探技术预测瓦斯的研究成果[J].煤炭学报,2006,31(3):334-336.
[11]Chang Suoliang,Liu Dameng,Lin Yucheng,et al.Application of spectral decomposition for fine seismic structural interpretation in coalfield and gas bearing property predication of coal seam[J].Journal of China CoalSociety,2009,34(8):1015-1021.常锁亮,刘大锰,林玉成,等.频谱分解技术在煤田精细构造解释及煤含气性预测中的应用[J].煤炭学报,2009,34(8):1015-1021.
[12]Yan Wenhua,Chen Zongcui,Ma Ximei,et al.3D seismic interpretation of coal-bed methane in Zhengzhuang block,Qinshui Basin[J].Oil Geophysical Prospecting,2012,47(S1):66-71.闫文华,陈宗翠,马喜梅,等.煤层气地震解释技术应用及效果——以沁水盆地郑庄区块三维为例[J].石油地球物理勘探,2012,47(S1):66-71.
[13]Chen Guiwu,Dong Shouhua,Wu Haibo,et al.2014.Research and application ofquantitative geophysics recognition in high abundance of coal-bed methane richregion[J].Progress in Geophysics,2014,29(5):2151-2156.陈贵武,董守华,吴海波,等.高丰度煤层气富集区地球物理定量识别技术研究与应用[J].地球物理学进展,2014,29(5):2151-2156.
[14]Zeng Hongliu,Backus MM.Interpretive advantages of 90°phase wavelets:Part 1:Modeling[J].Geophysics,2005,70(3):5-7.
[15]Fu Xuehai,Ye Shizhong,Jiang Bo,et al.Classification of Coalbody strucure and prediction of coal reservoir permeability with log curves[J].Well Logging Technology,2003,27(2):140-143.傅雪海,叶诗忠,姜波,等.用测井曲线划分煤体结构和预测煤储层渗透率[J].测井技术,2003,27(2):140-143.
[16]Li J,Liu D,Yao Y,et al.Evaluation of the reservoir permeability of anthracite coals by geophysical logging data[J].International Journal of Coal Geology,2011,87(2):121-127.
[17]Pan Heping,Liu Guoqiang.Evaluating gas content of coal-bed from denisty log data[J].Progress in Geophysics,1996,11(4):53-60.潘和平,刘国强.依据密度测井资料评估煤层的含气量[J].地球物理学进展,1996,11(4):53-60.
[18]Wang Anlong,Sun Xiaoqin,Xie Xuehen-g,et al.The method of calculating gas content and industrial components of coalbed by using well logging data[J].Reservoir Evaluation and Development,2011,(1-2):69-73.王安龙,孙小琴,谢学恒,等.利用测井资料计算煤层含气量及工业组分方法研究[J].油气藏评价与开发,2011,1(1-2):69-73.
[19]Zhao Fazhan,Qi Hongbin,Wang Yun.A geophysical logging method to detectthe water mineralization intensity underground[J].Progress in Geophysics,2002,17(3):551-558.赵发展,戚洪彬,王赟.地层水矿化度检测的地球物理测井方法[J].地球物理学进展,2002,17(3):551-558.
[20]Chang Suoliang,Chen Qiang,Liu Dongna,et al.Preliminary discussion on coal bed methane storage unit and its seismic geology comprehensive identifiation method[J].Journal of China Coal Society,2016,41(1):57-66.常锁亮,陈强,刘东娜,等.煤层气封存单元及其地震-地质综合识别方法初探[J].2016,41(1):57-66.
[21]Song Yan,Qin Shengfei,Zhao Mengjun.Two key geological factors controllingthe coal-bed methane reservoirs in China[J].Natural Gas Geoscience,2007,18(4):545-552.宋岩,秦胜飞,赵孟军.中国煤层气成藏的两大关键地质因素[J].天然气地球科学,2007,18(4):545-552.
[22]Zhang Zhenwen,Gao Yongli,Dai Fenghong,et al.The geologic agent affecting:The gas occurrence of the coal seam unmined in Xiaonan coalmine[J].Journal o-f China Coal Society,2007,32(9):950-954.张振文,高永里,代凤红,等.影响晓南矿未开采煤层瓦斯赋存的地质因素[J].煤炭学报,2007,32(9):950-954.
[23]Ye Jianping,Qin Yong,Lin Dayang.Coal-bed Methane Resources of China[M].Xuzhou:China University of Mining and Technology Press,1999:1-229.叶建平,秦勇,林大杨.中国煤层气资源[M].徐州:中国矿业大学出版社,1999:1-229.
[24]Qin Yong,Fu Xuehai,Yue Wei,et al.Relationship between depositional systems and coalbed gas reservoir and its caprock[J].Journal of Palaeogeography.2000,2(1):77-84.秦勇,傅雪海,岳巍,等.沉积体系与煤层气储盖特征之关系探讨[J].古地理学报,2000,2(1):77-84.
[25]Zeng Yong.Influence of Gas Capability on Closure of Coal Seam[C].2002 National Symposium on Gas Geology.Chengdu:China coal society Gas Geological Professional Committee,2002:1-3.曾勇.煤层顶板泥岩封存瓦斯能力的影响[C].2002全国瓦斯地质学术年会论文集.成都:中国煤炭学会瓦斯地质专业委员会,2002:1-3.

[1] 吴丛丛,杨兆彪,孙晗森,张争光,李庚,彭辉. 云南恩洪向斜西南区垂向流体能量特征及有序开发建议[J]. 天然气地球科学, 2018, 29(8): 1205-1214.
[2] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[3] 单衍胜,毕彩芹,迟焕鹏,王福国,李惠. 六盘水地区杨梅树向斜煤层气地质特征与有利开发层段优选[J]. 天然气地球科学, 2018, 29(1): 122-129.
[4] 张洲,王生维,周敏. 基于构造裂隙填图技术的煤储层裂隙发育特征预测与验证[J]. 天然气地球科学, 2017, 28(9): 1356-1362.
[5] 王玫珠,王勃,孙粉锦,赵洋,丛连铸,杨焦生,于荣泽,罗金洋,周红梅. 沁水盆地煤层气富集高产区定量评价[J]. 天然气地球科学, 2017, 28(7): 1108-1114.
[6] 郭广山,柳迎红,张苗,吕玉民. 沁水盆地柿庄南区块排采水特征及其对煤层气富集的控制作用[J]. 天然气地球科学, 2017, 28(7): 1115-1125.
[7] 马东民,李沛,张辉,李卫波,杨甫. 长焰煤中镜煤与暗煤吸附/解吸特征对比[J]. 天然气地球科学, 2017, 28(6): 852-862.
[8] 朱学申,梁建设,柳迎红,王存武,廖夏,郭广山,吕玉民. 煤层气井产水影响因素及类型研究——以沁冰盆地柿庄南区块为例[J]. 天然气地球科学, 2017, 28(5): 755-760.
[9] 倪小明, 李志恒,王延斌,吴建光. 沁水盆地中部断层发育区煤层气开发有利块段优选[J]. 天然气地球科学, 2017, 28(4): 602-610.
[10] 郭晨,夏玉成,卢玲玲,任亚平. 黔西比德—三塘盆地多层叠置独立含煤层气系统发育规律与控制机理[J]. 天然气地球科学, 2017, 28(4): 622-632.
[11] 申建,张春杰,秦勇,张兵. 鄂尔多斯盆地临兴地区煤系砂岩气与煤层气共采影响因素和参数门限[J]. 天然气地球科学, 2017, 28(3): 479-487.
[12] 郭晓龙,李璇,代春萌,边海军,许旭华,许晶. 煤层气地球物理预测方法[J]. 天然气地球科学, 2017, 28(2): 287-295.
[13] 马平华,霍梦颖,何俊,彭英明,邵先杰,接敬涛. 煤层气井压裂影响因素分析与技术优化——以鄂尔多斯盆地东南缘韩城矿区为例[J]. 天然气地球科学, 2017, 28(2): 296-304.
[14] 孙超群,李术才,李华銮,崔伟,宋曙光. 煤层气藏应力—渗流流固耦合模型及SPH求解[J]. 天然气地球科学, 2017, 28(2): 305-312.
[15] 韩旭,田继军,冯烁,张雨瑶 . 准南煤田玛纳斯矿区向斜—承压式煤层气富集模式[J]. 天然气地球科学, 2017, 28(12): 1891-1897.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!