天然气地球科学

• 天然气开发 • 上一篇    下一篇

裂缝性致密砂岩气藏时变形状因子研究

朱超凡1,李亚军1,桑茜1,宫厚健1,李彦超2,董明哲1,3   

  1. 1.中国石油大学(华东)石油工程学院,山东 青岛 266580;
    2.中国石油集团川庆钻探工程有限公司井下作业公司,四川 成都 610052;
    3.卡尔加里大学化学与石油工程学院,加拿大 卡尔加里  T2N 1N4
  • 收稿日期:2016-09-08 修回日期:2017-04-09 出版日期:2017-05-10 发布日期:2017-05-10
  • 通讯作者: 董明哲(1954-),男,加拿大人,国家“千人计划”特聘教授,主要从事非常规油气渗流理论与提高采收率研究. E-mail:mtdong@ucalgary.ca.
  • 作者简介:朱超凡(1990-),男,河南郑州人,博士研究生,主要从事非常规油气渗流理论与提高采收率研究. E-mail:Zhu_Chaof@163.com.
  • 基金资助:

    国家科技重大专项(编号:2016ZX05023-001;2017ZX05049-006);国家重点基础研究发展计划(973计划)项目(编号:2014CB239103);国家自然科学基金项目(编号:51674279)联合资助.

The time-dependent shape factor study for tight sandstone with fracture

Zhu Chao-fan1,Li Ya-jun1,Sang Qian1,Gong Hou-jian1,Li Yan-chao2,Dong Ming-zhe1,3   

  1. 1.School of Petroleum Engineering,China University of Petroleum (East China),Qingdao 266580,China;
    2.Chuanqing Drilling Compamy Down-hole Service Corporation,CNPC,Chengdu 610052,China;
    3.Department of Chemical and Petroleum Engineering,University of Calgary,Calgary T2N 1N4,Canada
  • Received:2016-09-08 Revised:2017-04-09 Online:2017-05-10 Published:2017-05-10

摘要:

形状因子是裂缝性致密砂岩气藏产能模拟分析的重要参数,但研究多集中在常规油气藏中,超低渗透率致密砂岩气藏的形状因子研究尚未开展。通过对Ehsan模型进行改进,运用数值计算方法得到了一维径向基质_裂缝模型时变形状因子,研究了渗透率、孔隙度、基质尺寸对时变形状因子的影响,并运用室内实验对该模型进行验证。结果表明:由于压力在超低渗透率(k<10-5×10-3μm2)基质中传递较慢,超低渗透率致密砂岩气藏形状因子出现明显的3个不同阶段:基质外边界压力下降阶段,基质内边界压力下降阶段,形状因子向稳定过渡阶段。随着渗透率和孔隙度的降低,第一,二阶段所持续时间增加,气体生产时间同时增加。随着基质尺寸的增加,形状因子达到稳定的整体时间增加,但各阶段所持续时间的相对关系未发生变化。通过数值模拟结果与实验结果对比发现,发现运用改进Ehsan模型计算得到的形状因子能够对致密砂岩气藏生产进行较好的预测。它可以为超低渗致密砂岩气藏的产能预测提供更准确的理论方法,也可为试井解释提供合适的形状因子、计算合理的窜流系数。

关键词: 时变形状因子, 致密砂岩, 无限导流能力裂缝, 超低渗基质, 可压缩流体

Abstract:

The matrix-fracture transfer shape factor is an important parameter of the modeling of fluidflow in fractured porous media,researches on it mainly focus on the conventionaloil and gasreservoirs,and it hasnt been developed in the tight gas reservoirs.Numerical method and experiments were conducted to study thematrix-fracture transfer shape factor and test the model.This paper mainly improves the Ehsan Model and obtainsthe time-dependent shape factors of the radial matrix-fracture model by numerical method.Moreover,the effect of the permeability,porosity,media size on the time-dependent shape factor were studied,and then the improved Ehsan Model was verified through the experiment.The results show: The pressure transmission is slow in the ultra-low permeability matrix(k<10-8μm2),so the time-dependent shape factors of tight gas reservoirs can be divided into three stages,including pressure drop stage of the matrix outer boundary,pressure drop stage of the matrix inner boundary and theshape factor transit to stabilization stage.The duration of the first and second stage increases with the decrease of the permeability and porosity,the gas production time increases at the same time.The time of shape factor transit to stabilization increases with the increase of media size,while the relationship between the relative duration doesnt change.It can be found in this paper that we can predict the production of the tight gas reservoirs better with the time-dependent shape factor.It can provide more accurate theory and methods for production forecastinultra-lowpermeability tight sandstone reservoir,and it also can provide suitable shape factor and calculate reasonable interporosityf low coefficient for well test interpretation.

Key words: The time-dependent shape factors, Tight sandstone, Fracture in infinite conductivity, Ultra-lowpermeability matrix, Compressible fluid

中图分类号: 

  • TE31

[1]Lu Tao,Liu Yanxia,Wu Lichao,et al.Challenges to and countermeasures for the production stabilization of tight sandstone gas reservoires of the Sulige Gasfield,Ordos Basin[J].Natural Gas Industry,2015,35(6):43-52.[卢涛,刘艳侠,武力超,等.鄂尔多斯盆地苏里格气田致密砂岩气藏稳产难点与对策[J].天然气工业,2015,35(6):43-52.]
[2]Tang Ruijiang.Optimization of fracturing trchnology for low-permeability tight sandstone gas reservoirs in the Yuanba Gasfield,Sichuan Basin[J].Natural Gas Industry,2015,35(7):55-59.[唐瑞江.元坝气田低渗透致密砂岩气藏压裂优化技术[J].天然气工业,2015,35(7):55-59.]
[3]Beckner J B.Improved Modeling of Imbibition Matrix/Fracture Fluid Transfer in Double Porosity Simulators[D].California,US:Stanford University,1990.
[4]Warren J E,Root P J.The behavior of naturally fractured reservoirs[J].Society of Petroleum Engineers Journal,1963,6(3):245-255.
[5]Sarma P,Aziz K.New transfer functions for simulation of naturally fractured reservoirs with dual-porosity models[J].Society of Petroleum Engineers Journal,2006,11(3):328-340.
[6]Barenblatt G E,Zheltov I P,Kochina I N.Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata)[J].Journal of Applied Mathematics and Mechanics,1960,20(8):52-64.
[7]Kazemi H,Merrill L S,Porterfield K L,et al.Numerical simulation ofwater-oil flow in naturally fractured reservoirs[J].Society of Petroleum Engineers Journal,1976,16(6):26-35.
[8]Coats K H.Implicit compositional simulation of single-porosity and dualporosity reservoirs[J].Paper Spe,1989.
[9]Zimmerman R W,Chen G,Hadgu T,et al.A numerical dual-porosity model with semi-analytical treatment of fracture/matrix flow[J].Water Resources Research,1993,29(7):27-37.
[10]Kazemi H,Gilman J R.Multiphase flow in fractured petroleum reservoirs[J].Flow and Contaminant Transport in Fractured Rock,1993,56(10):267-323.
[11]Lim K T,Aziz K.Matrix-fracture transfer shape factors for dual-porosity simulators[J].Journal of Petroleum Science & Engineering,1995,13(1):69-78.
[12]Chang M M.Analytical solution to single and two-phase flow problems of naturally fractured reservoirs:theoretical shape factor and transfer functions[D].Johor,Malaysia:Universiti Teknologi Malaysia,1995.
[13]Hassanzadeh H,Pooladi-Darvish M,Atabay S.Shape factor in the drawdown solution for well testing of dual-porosity systems[J].Advances in Water Resources,2009,32(11):1652-1663.
[14]Quintard M,Whitaker S.Transport in chemically and mechanically heterogeneous porous media.I:Theoretical development of region-averaged equations for slightly compressible single-phase flow[J].Advances in Water Resources,1996,19(1):29-47.
[15]Yang Zehao,Dong Mingzhe,Zhang Shaojie,et al.A method for determining transverse permeability of tight reservoir cores by radial pressure-pulse decay measurement[J].Journal of Geophysical Research Solid Earth,2016,121(10):7054-7070.
[16]He Y.The Shape Factor Study and Application for Fractured Reservoir[D].Chengdu:Chengdu University of Technology,2007.[何勇明.裂缝性油藏形状因子研究及应用[D].成都:成都理工大学,2007.]
[17]Ranjbar E,Hassanzadeh H.Matrix-fracture transfer shape factor for modeling flow of a compressible fluid in dual-porosity media[J].Advances in Water Resources,2011,34(5):627-639.
[18]Hassanzadeh H,Pooladi-Darvish M.Effects of fracture boundary conditions on matrix-fracture transfer shape factor[J].Transport Porous Media,2006,64(1):51-71.
[19]Bourbiaux B,Granet S,Landereau P,et al.Scaling up matrix-fracture transfers in dual-porosity models:Theory and application[C]//SPE annual technical conference at Houston.Tesas:Society of Petroleum Engineers,1999.
[20]Sarda S,Jeannin L,Bourbiaux B.Hydraulic characterization of fractured reservoirs: simulation on discrete fracture models[C]//SPE Reservoir Simulation Symposium at Houston.Tesas:Society of Petroleum Engineers,2001.
[21]Helmy M W,Wattenbarger R A.New shape factor for wells producted at constant pressure[J].Gas Field,1998:131-138.
[22]Edgar R,Anthony R,Kovscek.Time-dependent matrix-fracture shape-factor for partially and completely immersed fractures[J].Journal of Petroleum Science and Engineering,2003,54(3):149-163.
[23]Aditya N,Edgar R,Anthony R.Experimental determination of time-dependent matrix-fracture shape factors for different geometries and fracture filling regimes[J].Tetrahedron,2004,61(49):11672-11678.
[24]Ranjbar E,Hassanzadeh H,Chen Z X.Effect of fracture pressure depletion regimes on the dual-porosity shape factor for flow of compressible fluids in fractured porous media[J].Advances in Water Resources,2011,34(12):1681-1693.
[25]Sun Hedong,Mao Xiaoping,Kang Bo.Dynamic production performance prediction and decline laws of rectangular gas reservoirs[J].Natural Gas Industry,2011,31(7):40-42.[孙贺东,毛小平,康博.矩形气藏的产量递减规律及动态预测方法[J].天然气工业,2011,31(7):40-42.]
[26]Huyakorn P S.Finite element techniques for modeling groundwater flow in fractured aquifers[J].Water Resources Research,1983,19(4):1019-1035.
[27]Streltsova T D.Hydrodynamics of groundwater flow in a fractured formation[J].Water Resources Research,1977,12(3):405-414.
[28]Flynn G P,Hanks R V,Lemaire N A,et al.Viscosity of Nitrogen,Helium,Neon,and Argon from -78.5℃ to 100℃ below 200 Atmospheres[J].The Journal of Chemical Physics,1963,38(1):154-162.

[1] 朱立文,王震亮,张洪辉. 鄂尔多斯盆地乌审召地区山2亚段致密气“甜点”控因分析[J]. 天然气地球科学, 2018, 29(8): 1085-1093.
[2] 杨海军,张荣虎,杨宪彰,王珂,王俊鹏,唐雁刚,周露. 超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J]. 天然气地球科学, 2018, 29(7): 942-950.
[3] 游利军,王哲,康毅力,张杜杰. 致密砂岩孔渗对盐析的响应实验研究[J]. 天然气地球科学, 2018, 29(6): 866-872.
[4] 葛岩,朱光辉,万欢,潘新志,黄志龙. 鄂尔多斯盆地东缘紫金山侵入构造对上古生界致密砂岩气藏形成和分布的影响[J]. 天然气地球科学, 2018, 29(4): 491-499.
[5] 赵力彬,张同辉,杨学君,郭小波,饶华文. 塔里木盆地库车坳陷克深区块深层致密砂岩气藏气水分布特征与成因机理[J]. 天然气地球科学, 2018, 29(4): 500-509.
[6] 黄禹忠,刁素,栗铁峰,何红梅. 致密砂岩气藏压裂伤害及对策——以川西坳陷ZH构造JS12气藏为例[J]. 天然气地球科学, 2018, 29(4): 579-585.
[7] 何文军,杨海波,费李莹,王学勇,杨彤远,杨翼波,鲍海娟. 准噶尔盆地新光地区佳木河组致密砂岩气有利区资源潜力综合分析[J]. 天然气地球科学, 2018, 29(3): 370-381.
[8] 高文杰,李贤庆,张光武,魏强,张吉振,祁帅,陈金明. 塔里木盆地库车坳陷克拉苏构造带深层致密砂岩气藏储层致密化与成藏关系[J]. 天然气地球科学, 2018, 29(2): 226-235.
[9] 张艳,张春雷,高世臣. 基于SOM和HSV染色技术的致密砂岩储层地震相分析[J]. 天然气地球科学, 2018, 29(2): 259-267.
[10] 王颖, 邓守伟, 范晶, 邹晓品, 杨静. 松辽盆地南部重点断陷天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1455-1464.
[11] 张吉,侯科锋,李浮萍,田敏,张志刚. 基于储层地质知识库约束的致密砂岩气藏储量评价——以鄂尔多斯盆地苏里格气田苏14区块为例[J]. 天然气地球科学, 2017, 28(9): 1322-1329.
[12] 李阳,李树同,牟炜卫,闫灿灿. 鄂尔多斯盆地姬塬地区长6段致密砂岩中黏土矿物对储层物性的影响[J]. 天然气地球科学, 2017, 28(7): 1043-1053.
[13] 张大智. 利用氮气吸附实验分析致密砂岩储层微观孔隙结构特征——以松辽盆地徐家围子断陷沙河子组为例[J]. 天然气地球科学, 2017, 28(6): 898-908.
[14] 杨智峰,曾溅辉,韩菲,冯枭,冯森,张译丹,乔俊程. 鄂尔多斯盆地西南部长6—长8段致密砂岩储层微观孔隙特征[J]. 天然气地球科学, 2017, 28(6): 909-919.
[15] 李耀华,宋岩,姜振学,王朋岩,赵荣,刘顺宇,阴丽诗. 全球致密砂岩气盆地参数统计分析[J]. 天然气地球科学, 2017, 28(6): 952-964.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!