天然气地球科学

• 天然气地质学 • 上一篇    下一篇

裂陷湖盆深层烃类赋存相态极限的动力学过程分析——以渤海湾盆地歧口凹陷为例

刘岩1,2,3,杨池银4,肖敦清2,廖前进4,周立宏2,于学敏2,国建英5,蒲秀刚2,姜文亚2,邹磊落2,聂国振2,刘庆新2,滑双君2   

  1. 1.长江大学录井技术与工程研究院,湖北 荆州 434023;
    2.中国石油大港油田公司勘探开发研究院,天津 300280;
    3.油气资源与探测国家重点实验室,中国石油大学(北京),北京 102249;
    4.中国石油大港油田公司,天津 300280;
    5.中国石油勘探开发研究院廊坊分院,河北 廊坊 065007
  • 收稿日期:2017-01-09 修回日期:2017-03-27 出版日期:2017-05-10 发布日期:2017-05-10
  • 作者简介:刘岩(1985-),男,河南泌阳人,博士后,主要从事油气地球化学的教学与科研工作. E-mail:mail_liuyan@163.com.
  • 基金资助:

    国家自然科学基金(编号:41503034;41472095);油气资源与探测国家重点实验室开放课题(编号:PRP/open-1509)联合资助.

Hydrocarbon phase limit and conversion process in the deep formation of rift lacustrine basin from Qikou Sag of Bohai Bay Basin,eastern China

Liu Yan1,2,3,Yang Chi-yin4,Xiao Dun-qing2,Liao Qian-jin4,Zhou Li-hong2,Yu Xue-min2,Guo Jian-ying2,Pu Xiu-gang2,Jiang Wen-ya2,Zou Lei-luo2,Nie Guo-zhen2,Liu Qing-xin2,Hua Shuang-jun2   

  1. 1.Institute of Mud Logging Technology and Engineering,Yangtze University,Jingzhou 434023,China;
    2.Exploration and Development Research Institute,Dagang Oilfield Company of PetroChina,Tianjin 300280,China;
    3.State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing 102249 China;
    4.Dagang Oilfield Company of PetroChina,Tianjin 300280,China;
    5.Langfang Branch of Research Institute of Petroleum Exploration& Development,PetroChina,Langfang 065007 China
  • Received:2017-01-09 Revised:2017-03-27 Online:2017-05-10 Published:2017-05-10

摘要:

为适应东部盆地向深层_超深层勘探的需求,通过歧口凹陷沙河街组典型原油的裂解生气模拟实验,采用原油裂解生烃动力学特征研究深层烃类流体相态变化规律。结果表明:原油裂解气生烃动力学可以方便地研究地质条件下原油裂解程度,进而判断地下油气相态的理论深度极限。在固定频率因子A=1014S-1前提下,渤海湾盆地歧口凹陷沙河街组原油裂解成C1—C5的活化能分布在250~270kJ/mol之间,平均活化能E0=255.47kJ/mol,高于海相原油的245kJ/mol(59kCal/mol)。在同等升温速率条件下,其裂解生气路径与西部海相原油存在明显差异。以歧口凹陷地层沉积埋藏史确定的热史路径进行动力计算结果显示,歧口凹陷深层单一液相原油存在的理论深度极限为5 700m,凝析油气存在的理论深度极限为6 700m。结合歧北次凹和滨海具体地质条件进行油气藏相态演变过程分析,结果表明:在实际地质条件下,干酪根的裂解生气和更深部气源的充注气侵,使得原有油藏提前达到极高的气油比,纯液相原油提前消失。油气运移到浅部过程中受温—压条件的变化,导致了油气的分异和相态转换。温度和时间决定的生烃效应是深层油气相态的内因,在具体分析单个油藏相态时,不仅要考虑油气来源、组成、油气成藏过程,尤其还要注意后期构造活动造成的油气调整改造,这些是后期油气相态分异转化的外因。

关键词: 深层, 烃类相态, 原油裂解生气, 裂陷盆地, 生烃动力学

Abstract:

It is an important research direction for the prediction of hydrocarbon phase in the reservoir during the deep exploration of rift basins in eastern China.The typical lacustrine crude oil of Shahejie Formation in Qikou Sag was used for oil cracking to gas simulation experiment by the gold tube in this paper.Then,the kinetic parameters obtained from the experimental data were studied during the cracking reactions and the hydrocarbon phase conversion process under geological conditions.The results showed that the activation energy of the oil cracking to gas from the BH-28 lacustrine crude oil ranged from 250kJ/mol to 270kJ/mol with an average of Eo=255.47kJ/mol,and the frequency factor was about A=1014S-1.It is higher than that of typical marine oil Eo=246.97kJ/mol (59kCal/mol).Using these kinetic parameters,the simulated cracking process of the lacustrine oil of Shahejie formation was far different from that of marine oil from western China under the same geological heating rate (3℃/Ma).And the simulated oil cracking degree in Well Niudong-1 is 73.9%,almost the same with the conversion cracking degree (60%-75%) by concentrations of 3,4-dimethyldiamantane.The kinetics of oil cracking gas could be used to investigate the oil cracking degree easily,then to get the theoretical separate oil phase depth limit.By using this model,oil in Qikou Sag,as a theoretical separate phase destruction,occurs above 5 700m depth limit (RO is about 2.0%,reservoir temperature=209℃,with cracking transition C of 62.5%),and condensate gas destruction occurs above 6 700m depth limit (RO is about 3.2%,reservoir temperature=240℃,with C to 99%) under the geological conditions from Qikou Sag.Actually,the hydrocarbon phase is affected by many factors.For example,migration and changes of temperature and pressure conditions have great influence on phase conversion behavior.The injection of gas,originated from kerogen cracking gas and oil cracking gas in deeper,could increase GOR and the real separate phase depth would reduce.

Key words: Deep strata, Hydrocarbon phase, Oil cracking gas, Rift basin, Kinetics

中图分类号: 

  • TE122

[1]Jia Chengzao,Pang Xiongqi.Research processes and main development directions of deep hydrocarbon geological theories[J].Acta Petrolei Sinica,2015,36(12):1457-1469.[贾承造,庞雄奇.深层油气地质理论研究进展与主要发展方向[J].石油学报,2015,36(12):1457-1469.]
[2]Hu Wenrui,Bao Jingwei,Hu Bin.Trend and progress in global oil and gas exploration[J].Petroleum Exploration and Development,2013,40(4):409-413.[胡文瑞,鲍敬伟,胡滨.全球油气勘探进展与趋势[J].石油勘探与开发,2013,40(4):409-413.]
[3]Sun Longde,Fang Chaoliang,Sa Liming,et al.Innovation and prospect of geophysical technology in the exploration of deep oil and gas[J].Petroleum Exploration and Development,2015,42(4):414-424.[孙龙德,方朝亮,撒利明,等.地球物理技术在深层油气勘探中的创新与展望[J].石油勘探与开发,2015,42(4):414-424.]
[4]Sun Longde,Zou Caineng,Zhu Rukai,et al.Formation,distribution and potential of deep hydrocarbon resources in China[J].Petroleum Exploration and Development,2013,40(6):641-649.[孙龙德,邹才能,朱如凯,等.中国深层油气形成、分布与潜力分析[J].石油勘探与开发,2013,40(6):641-649.]
[5]Tissot  B  P,Welte D  H.Petroleum Formation and Occurrence[M].2nd ed.Berlin,Heidelberg:Springer-Verlag,1984:1-669.
[6]Horsfield B,Schenk H J,Mills N,et al.An investigation of the in reservoir conversion of oil to gas:Compositional and kinetic findings from closed-system programmed-temperature pyrolysis[J].Organic Geochemistry,1992,19(1/3):191-204.
[7]Pepper A S,Dodd T A.Simple kinetic models of petroleum formation.PartⅡ:Oil-gas cracking[J].Marine and Petroleum Geology,1995,12(3):321-340.
[8]Hunt J M.Petroleum Geochemistry and Geology[M].2nd ed.New York:W.H.Freeman and Company,1996:1-743.
[9]Behar F,Lorant F,Mazeas L.Elaboration of a new compositional kinetic schema for oil cracking[J].Organic Geochemistry,2008,39(6):764-782.
[10]Waples D W.The kinetics of in-reservoir oil destruction and gas formation:Constraints from experimental and empirical data,and from thermodynamics[J].Organic Geochemistry,2000,31(6):553-575.
[11]Lu Shuangfang,Xue Haitao,Zhong Ningning.The chemical kinetic study of the oil preservation threshold[J].Petroleum Exploration and Development,2002,29(6):1-3.[卢双舫,薛海涛,钟宁宁.石油保存下限的化学动力学研究[J].石油勘探与开发,2002,29(6):1-3]
[12]Zhu Guangyou,Zhang Shuichang.Hydrocarbon accumulation conditions and exploration potential of deep reservoirs in China[J].Acta Petrolei Sinica,2009,30(6):793-802.[朱光有,张水昌.中国深层油气成藏条件与勘探潜力[J].石油学报,2009,30(6):793-802.]
[13]Meihejef.The oil bearing temperature conditions on deep strata[J].Petroleum Geology Formation,1993,14(3/4):1-4.
[14][KG*5/6]Zhang Shuichang,Zhu Guangyou,Yang Haijun,et al.The phases of Ordovician hydrocarbon and their origin in the Tabei Uplift,Tarim Basin[J].Acta Petrologica Sinica,2011.27(8):2447-2460.[张水昌,朱光有,杨海军,等.塔里木盆地北部奥陶系油气相态及其成因分析[J].岩石学报,2011,27(8):2447-2460.]
[15]Fu Deliang,Zhou Shixin,Li Jing,et al.Kinetics of oil cracking and the meaning of itsphase transition characteristics:Taking Well YS1 in northern Qaidam Basin as an example[J].Natural Gas Geoscience,2016,27(8):1500-1508.[付德亮,周世新,李靖,等.原油裂解动力学及其相变特征和意义——以柴达木盆地北缘伊深1井为例[J].天然气地球科学,2016,27(8):1500-1508.]
[16]Tian Hui,Wang Zhaoming,Xiao Zhongyao,et al.Oil cracking to gases:Kinetic modeling and geological significance[J].Chinese Science Bulletin,2006,51(22):2763-2770.[田辉,王招明,肖中尧,等.原油裂解成气动力学模拟及其意义[J].科学通报,2006,51(15):1821-1827.]
[17]Zhang Shuichang,Wang Zhaoming,Wang Feiyu,et al.Oil accumulation history in Tadong 2 oil reservoir in Tarim Basin,NW China:A case study of oil stability and cracking[J].Petroleum Exploration and Development,2004,31(6):25-31.[张水昌,王招明,王飞宇,等.塔里木盆地塔东2油藏形成历史:原油稳定性与裂解作用实例研究[J].石油勘探与开发,2004,31(6):25-31.]
[18][KG*5/6]He Kun,Zhang Shuichang,Mi Jingkui.Research on the kinetics and controlling factors for oil cracking[J].Natural Gas Geoscience,2011,22(2):211-218.[何坤,张水昌,米敬奎.原油裂解的动力学及控制因素研究[J].天然气地球科学,2011,22(2):211-218.]
[19]Zhao Xianzheng,Jin Fengming,Wang Quan,et al.Niudong 1 ultra-deep and ultra-high temperature subtle buried hill field in Bohai Bay Basin:Discovery and significance[J].Acta Petrolei Sinica,2011,32(6):915-927.[赵贤正,金凤鸣,王权,等.渤海湾盆地牛东1超深潜山高温油气藏的发现及其意义[J].石油学报,2011,32(6):915-927.]
[20]Ma Anlai,Jin Zhijun,Liu Jinzhong.Hydrocarbon phase in the deep Cambrian of the Tarim Basin[J].Petroleum Geology & Experiment,2015,37(6):681-688.[马安来,金之钧,刘金钟.塔里木盆地寒武系深层油气赋存相态研究[J].石油实验地质,2015,37(6):681-688.]
[21]Li Xianqing,Yang Yunfeng,Tian Hui,et al.Study on kinetic parameters of crude oil cracking gas and its application[J].Acta Sedimentologica Sinica,2012,30(6):1156-1164.[李贤庆,仰云峰,田辉,等.原油裂解成气动力学参数及其应用研究[J].沉积学报,2012,30(6):1156-1164.]
[22]Li Xianqing,Yang Yunfeng,Feng Songbao,et al.Characteristics of hydrocarbon and gas generation process from pyrolyzed crude oils in Tarim Basin[J].Journal of China University of Mining& Technology,2012,41(3):397-405.[李贤庆,仰云峰,冯松宝,等.塔里木盆地原油裂解生烃特征与生气过程研究[J].中国矿业大学学报,2012,41(3):397-405.]
[23]Gao Shengjun,Chen Yicai,Li Yanjun,et al.Pyrolysis on crude oil and characteristics of Sha 4 member cracking gas,Dongying Depression[J].Natural Gas Geoscience,2009,20(1):32-35.[高生军,陈义才,李延钧,等.东营凹陷沙四段原油裂解热模拟实验及产物特征[J].天然气地球科学,2009,20(1):32-35.]
[24]Schenk H J,Primio R DI,Horsfield B.The conversion of oil into gas in petroleum reservoirs.Part 1:Comparative kinetic investigation of gas generation from crude oils of lacustrine,marine and fluviodeltaic origin by programmed-temperature closed-system pyrolysis[J].Organic Geochemistry,1997,26(7-8):467-481.
[25]Zhang Shuichang Hu Guoyi,Mi Jingkui,et al.Time-limit and yield of natural gas generation from different origins and their effects on forecast of deep oil and gas resources[J].Acta Petroleum Sinica,2013,34(S1):41-50.[张水昌,胡国艺,米敬奎,等.三种成因天然气生成时限与生成量及其对深部油气资源预测的影响[J].石油学报,2013,34(S1):41-50.]
[26]Liu Yan,Zhong Ningning,Chen Jianfa,et al.Accumulation history of the Changxing-Feixianguan oil cracked gas reservoirs in northeastern Sichuan[J].Science in China:Series D,2013,43(11):1819-1827.[刘岩,钟宁宁,陈践发,等.川东北长兴-飞仙关组原油裂解型气藏成藏史分析[J].中国科学:D辑,2013,(11):1819-1827.]
[27]Zhang Shuichang,Shuai Yanhua,Zhu Guangyou.TSR promotes the formation of oil-cracking to gas:Evidence from simulation experiment[J].Science in China:Series D,2008,51(3):451-455.[张水昌,帅燕华,朱光有.TSR促进原油裂解成气:模拟实验证据[J].中国科学:D辑,2008,38(3):307-311.]
[28]Zhao Xianzheng,Jin Fengming,Mi Jingkui,et al.Characteristics of diamondoids and light hydrocarbons from Niudong Field and implication for oil/gas origin[J].Natural Gas Geoscience,2014,25(9):1395-1402.[赵贤正,金凤鸣,米敬奎,等.牛东油气田原油中金刚烷和轻烃特征及其对油气成因的指示意义[J].天然气地球科学,2014,25(9):1395-1402.]
[29]Dieckmann V.Modeling petroleum formation from heterogeneous source rocks:The influence of frequency factors on activation genergy distribution and geological prediction[J].Marine and Petroleum Geology,2005,22(3):375-390.
[30]Claypool G E,Mancini E A.Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation,southwestern Alabama[J].AAPG Bulletin,1989,73(7):904-924.
[31]McCain W D,Bridges B Jr.Volatile oils and retrograde gases:What’s the difference[J].Petroleum Engineer International,1994,66(1):35-36.
[32]Hao Fang,Dong Weiliang,Zou Huayao,et al.Over pressure fluid flow and rapid accumulation of natural gas in Yinggehai Basin[J].Acta Petroleum Sinica,2003,24(6):7-12.[郝芳,董伟良,邹华耀,等.莺歌海盆地汇聚型超压流体流动及天然气晚期快速成藏[J].石油学报,2003,24(6):7-12.]

[1] 杨海军,张荣虎,杨宪彰,王珂,王俊鹏,唐雁刚,周露. 超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J]. 天然气地球科学, 2018, 29(7): 942-950.
[2] 朱光有,曹颖辉,闫磊,杨海军,孙崇浩,张志遥,李婷婷,陈永权. 塔里木盆地8 000m以深超深层海相油气勘探潜力与方向[J]. 天然气地球科学, 2018, 29(6): 755-772.
[3] 陈斐然,张义杰,朱光有,张宝收,卢玉红,张志遥. 塔里木盆地台盆区深层天然气地球化学特征及成藏演化[J]. 天然气地球科学, 2018, 29(6): 880-891.
[4] 倪新锋,沈安江,韦东晓,乔宇婷,王莹. 碳酸盐岩沉积学研究热点与进展:AAPG百年纪念暨2017年会及展览综述[J]. 天然气地球科学, 2018, 29(5): 729-742.
[5] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[6] 高文杰,李贤庆,张光武,魏强,张吉振,祁帅,陈金明. 塔里木盆地库车坳陷克拉苏构造带深层致密砂岩气藏储层致密化与成藏关系[J]. 天然气地球科学, 2018, 29(2): 226-235.
[7] 于京都, 郑民, 李建忠, 吴晓智, 郭秋麟. 我国深层天然气资源潜力、勘探前景与有利方向[J]. 天然气地球科学, 2018, 29(10): 1398-1408.
[8] 肖敦清, 姜文亚, 蒲秀刚, 王娜, 岳云福, 孙超囡, 代昆, 滑双君. 渤海湾盆地歧口凹陷中深层天然气成藏条件与资源潜力[J]. 天然气地球科学, 2018, 29(10): 1409-1421.
[9] 白雪峰, 梁江平, 张文婧, 付丽, 彭建亮, 薛涛, 杨立伟, 刘继莹. 松辽盆地北部深层天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1443-1454.
[10] 徐春春,邹伟宏,杨跃明,段勇,沈扬,罗冰,倪超,付小东,张建勇. 中国陆上深层油气资源勘探开发现状及展望[J]. 天然气地球科学, 2017, 28(8): 1139-1153.
[11] 姚根顺,伍贤柱,孙赞东,余春昊,葛云华,杨贤友,文龙,倪超,付小东,张建勇. 中国陆上深层油气勘探开发关键技术现状及展望[J]. 天然气地球科学, 2017, 28(8): 1154-1164.
[12] 张建勇,倪新峰,吴兴宁,李文正,郝毅,陈娅娜,吕学菊,谷明峰,田瀚,朱茂. 中国主要克拉通盆地深层白云岩优质储层发育主控因素及分布[J]. 天然气地球科学, 2017, 28(8): 1165-1175.
[13] 郭潇潇,徐新德,熊小峰,侯静娴,刘海钰. 莺歌海盆地中深层天然气成藏特征与有利勘探领域[J]. 天然气地球科学, 2017, 28(12): 1864-1872.
[14] 周露,莫涛,王振鸿,朱文慧,尚江伟,陈维力,李梅,张琪. 塔里木盆地克深气田超深层致密砂岩储层裂缝分级分组合特征[J]. 天然气地球科学, 2017, 28(11): 1668-1677.
[15] 付德亮,周世新,李靖,李源遽,马瑜. 原油裂解动力学及其相变特征和意义——以柴达木盆地北缘伊深1井为例[J]. 天然气地球科学, 2016, 27(8): 1500-1508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王作栋,梁明亮,郑建京,李晓斌,李中平,钱宇.
华北中—上元古界下马岭组烃源岩分子指纹特征
[J]. 天然气地球科学, 2013, 24(3): 599 -603 .
[2] 梁峰,朱炎铭,漆麟,王红岩,拜文华,马超,张琴,会英,武瑾. 湖南常德地区牛蹄塘组富有机质页岩成藏条件及含气性控制因素[J]. 天然气地球科学, 2016, 27(1): 180 -188 .
[3] 张小涛,陈满,蒋鑫,杨洪志,杨学锋. 页岩气井产能评价方法研究[J]. 天然气地球科学, 2016, 27(3): 549 -553 .
[4] 殷建国,刘旭,白雨,刘军,康莉,张顺存. 准噶尔盆地阜东斜坡区沉积相特征及其对储层物性的控制作用[J]. 天然气地球科学, 2015, 26(S2): 23 -32 .
[5] 徐兵祥. 页岩凝析气井生产数据分析新方法[J]. 天然气地球科学, 2016, 27(5): 905 -909 .
[6] 王玉满,李新景,董大忠,张晨晨,王淑芳,黄金亮,管全中. 海相页岩裂缝孔隙发育机制及地质意义[J]. 天然气地球科学, 2016, 27(9): 1602 -1610 .
[7] 蒋裕强,谷一凡,徐昌海,张洁伟,程晓艳,陈辉. 开江—梁平海槽东侧飞仙关组岩相分区及地质意义[J]. 天然气地球科学, 2018, 29(8): 1067 -1077 .
[8] 《天然气地球科学》-期封面及目次. 《天然气地球科学》2018-9期封面及目次[J]. 天然气地球科学, 2018, 29(9): 8091 -8092 .
[9] 王清龙,林畅松,李浩,韩剑发,孙彦达,何海全. 塔里木盆地西北缘中下奥陶统碳酸盐岩沉积微相特征及演化[J]. 天然气地球科学, 2018, 29(9): 1274 -1288 .
[10] 孙可欣,李贤庆,魏强,梁万乐,李剑,张光武. 利用流体历史分析技术研究库车坳陷大北气田油气充注史[J]. 天然气地球科学, 2018, 29(9): 1289 -1300 .