天然气地球科学

• 非常规天然气 • 上一篇    下一篇

沁水盆地中东部海陆过渡相页岩孔隙结构及分形特征

郗兆栋1,2,唐书恒1,2,李俊3,李雷1,2   

  1. 1.中国地质大学(北京)海相储层演化与油气富集机理教育部重点实验室,北京 100083;
    2.中国地质大学(北京)页岩气资源勘查与战略评价国土资源部重点实验室,北京 100083;
    3.中国矿业大学(北京),北京 100083
  • 收稿日期:2016-09-26 修回日期:2017-01-08 出版日期:2017-03-10 发布日期:2017-03-10
  • 通讯作者: 唐书恒(1965-),男,河北正定人,教授,博士生导师,主要从事非常规天然气地质与开发研究. E-mail:tangsh@cugb.edu.cn.
  • 作者简介:郗兆栋(1991-),男,河北深州人,博士研究生,主要从事非常规天然气地质研究. E-mail:505271801@qq.com.
  • 基金资助:

    国家自然科学基金项目(编号:41272176;41330317)联合资助.

Investigation of pore structure and fractal characteristics of marine-continentaltransitional shale in the east-central of Qinshui Basin

Xi Zhao-dong1,2,Tang Shu-heng1,2,Li Jun3,Li Lei1,2   

  1. 1.MOE Key Lab of Marine Reservoir Evolution and Hydrocarbon Enrichment Mechanism,China University of Geosciences,Beijing 100083,China;
    2.MOLR Key Lab of Shale Gas Resources Survey and Strategic Evaluation,China University of Geosciences,Beijing 100083,China;
    3.China University of Mining and Technology,Beijing 100083,China
  • Received:2016-09-26 Revised:2017-01-08 Online:2017-03-10 Published:2017-03-10

摘要:

为研究海陆过渡相页岩的孔隙结构及分形特征,对采自沁水盆地的 12 块样品进行了低温氮气吸附、扫描电镜、X-射线衍射和有机质含量等系列分析测试。结果表明,研究区页岩黏土矿物最为富集,石英含量次之,有机质含量平均为2.98%,干酪根类型以Ⅲ型为主。中孔是研究区页岩的主体孔隙,对孔隙体积和比表面积贡献最大。研究区页岩孔隙具有明显的分形特征,利用FHH模型计算得到2种分形维数(D1,D2)。黏土矿物含量与D1,D2具有较好的正相关性,有机质含量与分形维数无明显相关关系。 D1和D2具有一定的正相关性,可以共同定量表征页岩孔隙结构的复杂程度和孔隙表面的粗糙程度。分形维数D1,D2越大,页岩孔隙体积和比表面积越大,越有利于气体的富集,但是D2越大孔隙结构越趋于复杂,不利于气体的渗流。分形维数D1越大而D2适中的页岩储集能力较强,且有利于页岩气的开发。

关键词: 沁水盆地, 海陆过渡相, 页岩, 氮气吸附, 分形特征

Abstract:

To better understand the pore structure and fractal characteristics of marine-continental transitional shale in the east-central of Qinshui Basin,we collected 12 shale samples and performed a series of parallel experiments,including low-temperature nitrogen adsorption,scanning electron microscopy,total organic carbon content and X-ray diffraction analyses.The results show that the dominant minerals in the shale were clay minerals,followed by quartz.The average value of total organic carbon was 2.98% and kerogen in the shale samples is characterized by type Ⅲ.According to the N2 physisorption analysis,mesopores which significantly contribute to the pore volume and specific surface area were dominant in the marine-continental transitional shale samples.The pore in shale is fractal and the fractal dimensions were obtained from using the FHH model,named D1 and D2.There is a positive relationship between D1,D2 and clay minerals,in contrast,the impact of TOC on the fractal dimensions is relatively weak.There is a positive correlation between D1 and D2,indicating that both fractal dimensions can be used to characterize the pore structure and pore surface of the marine-continental transitional shale.More pore volume and specific surface area are always developed in shale with higher D1 and D2.However,the higher the D2,the more complicated of pore structure which is favorable for gas adsorption rather than gas transportation.Therefore,the higher the D1,the moderate the D2,the shale is favorable for gas storing-accumulating and exploitation.

Key words: Qinshui Basin, Marine-continental transitional facies, Shale, N2 adsorption/desorption, Fractal characteristics

中图分类号: 

  • TE135

[1]Tang Shuheng,Fan Erping,Zhang Songhang,et al.Reservoir characteristics and gas-bearing capacity of the Lower Palaeo-Zoic marine shales in Northwestern Hunan[J].Earth Science Frontiers,2016,23(2):135-146.[唐书恒,范二平,张松航,等.湘西北下古生界海相页岩储层特征与含气性分析[J].地学前缘,2016,23(2):135-146.]
[2]Fan Erping,Tang Shuheng,Zhang Chenglong,et al.Scanning-elec tron-microscopic micropore characteristics ofLower Paleozoic black shale in northwestern Hunan Province[J].Journal of Palaeogeogrphy,2014,16(1):133-142.[范二平,唐书恒,张成龙,等.湘西北下古生界黑色页岩扫描电镜孔隙特征[J].古地理学报,2014,16(1):133-142.]
[3]Hu J G,Tang S H,Zhang S H.Investigation of pore structure and fractal characteristics of the Lower Silurian Longmaxi shales in western Hunan and Hubei Provinces in China[J].Journal of Natural Gas Science and Engineering,2015,28(6):522-535.
[4]Xi Zhaodong,Tian Zhongbin,Tang Shuheng,et al.Characteristics and main controlling factors of shale gas reservoirs in transitional facies on the eastern margin of Ordos Basin[J].Geology in China,2016,43(6):2059-2069.[郗兆栋,田忠斌,唐书恒,等.鄂尔多斯盆地东缘海陆过渡相页岩气储层孔隙特征及影响因素[J].中国地质,2016,43(6):2059-2069.]
[5]Zhao Jinzhou,Fu Dongyu,Li Yongming,et al.Analysis of sensitive factors abotmulti-stage fractured well productivity in shale gas reservoirs based on modified trilinear flow model[J].Natural Gas Geoscience,2016,27(7):1324-1331.[赵金洲,符东宇,李勇明,等.基于改进三线性流模型的多级压裂页岩气井产能影响因素分析[J].天然气地球科学,2016,27(7):1202-1214.]
[6]Jiang S,Xu Z Y,Feng Y L,et al.Geologic characteristics of hydrocarbon-bearing marine,transitional and lacustrine shales in China[J].Journal of Asian Earth Sciences,2016,115(1):404-418.
[7]Xie Delu,Guo Yinghai,Zhao Difei.Fractal characteristics of adsorption pore of shale based on low temperature nitrogen experiment[J].Journal of China Coal Society,2014,39(12):2466-2472.[解德录,郭英海,赵迪斐.基于低温氮实验的页岩吸附孔分形特征[J].煤炭学报,2014,39(12):2466-2472.]
[8]Yang F,Ning Z F,Liu H Q.Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin,China[J].Fuel,2014,115(1):378-384.
[9]Yang Feng,Ning Zhengfu,Wang Qing,et al.Fractal characteristics of nanopore in shales[J].Natural Gas Geoscience,2014,25(4):618-623.[杨峰,宁正福,王庆,等.页岩纳米孔隙分形特征[J].天然气地球科学,2014,25(4):618-623.]
[10]Cao Taotao,Song Zhiguang,Luo Houyong,et al.Pores system characteristics of Permian transitional shale reservoir in the Lower Yang Yangze region,China[J].Natural Gas Geoscience,2016,27(7):1332-1345.[曹涛涛,宋之光,罗厚勇,等.下扬子地区二叠系海陆过渡相页岩孔隙体系特征[J].天然气地球科学,2016,27(7):1332-1345.]
[11]Tang Xuan,Zhang Jinchuan,Ding Wenlong,et al.The reservoir property of the Upper Paleozoic marine-continental transitional shale and its gas-bearing capacity in the southeastern Ordos Basin[J].Earth Science Frontiers,2016,23(2):147-157.[唐玄,张金川,丁文龙,等.鄂尔多斯盆地东南部上古生界海陆过渡相页岩储集性与含气性[J].地学前缘,2016,23(2):147-157.]
[12]Fu Juanjuan,Guo Shaobin,Cao Quanfang,et al.Reservoir characteristic and enrichment condition of shale gas in the Carboniferous-Permian coal-bearing formations of Qinshui Basin[J].Earth Science Frontiers,2016,23(2):167-175.[付娟娟,郭少斌,高全芳,等.沁水盆地煤系地层页岩气储层特征及评价[J].地学前缘,2016,23(2):167-175.]
[13]Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale-gas systems:The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin,2007,91(4):475-499.
[14]Ratcliffe K,Schmidt M W K.Application of inorganic whole rock geochemistry to shale resource plays an example fromthe Eagle Ford Shale Formation,Texas[J].Houston Geological Society Bulletin,2012,10:4-9.
[15]Cao Qingying .Identification of micro-components and types of kerogen under the transmitted light[J].Petroleum Exploration and Development,1985,12(5):14-32.[曹庆英.透射光下干酪根显微组分鉴定及类型划分[J].石油勘探与开发,1985,12(5):14-32.]
[16]Loucks R G,Reed R M,Ruppel S C,et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J].AAPG Bulletin,2012,96(6):1071-1098.
[17]Yang R,He S,Yi J Z,et al.Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area,Sichuan Basin:Investigations using FE-SEM,gas adsorption and helium pycnometry[J].Marine and Petroleum Geology,2016,70(2):27-45.
[18]Curtis M E,Ambrose  J,Sondergeld C H,et al.Transmission and Scanning electron Microscopy investigation of pore connectivity of gas shales on the nano scale[C].SPE 144391.SPE North American Unconventional Gas Conference,Woodland,Texas,USA,14-16 June 2011.
[19]Zhao Pei,Li Xianqing,Tian Xingwang,et al.Study on micro-pores structure characteristics of Longmaxi Formation shale gas reservoirs in the southern Sichuan Basin[J].Natureal Gas Geoscience,2014,25(6):947-956.[赵佩,李贤庆,田兴旺,等.川南地区龙马溪组页岩气储层微孔隙结构特征[J].天然气地球科学,2014,25(6):947-956.]
[20]Li Jun,Tang Shuheng,Lang Yu,et al.Characteristics of micro-scale pore structures of shale gas reservoirs in transitional facies in north China:A case study of Wenshui area in Shanxi Province[J].2015,24(S2):112-118.[李俊,唐书恒,郎雨,等.华北过渡相页岩气储层微观孔隙结构特征——以山西省文水地区为例[J].中国矿业,2015,24(S2):112-118.]
[21]Groen J C,Peffer  LA A,Perez-Ramírez J.Pore size determination in modified microand mesoporous materials.Pitfalls and limitations in gas adsorption data analysis[J].Microporous Mesoporous Mater,2003,60 (1-3):1-17.
[22]Xi Zhaodong,Tang Shuheng,Zhang Songhang,et al.Pore structure and fractal features of sapropelite[J].Coal Science and Technology,2016,44(11):103-109.[郗兆栋,唐书恒,张松航,等.腐泥煤的孔隙结构及分形特征[J].煤炭科学技术,2016,44(11):103-109.]
[23]Xiong J,Liu X J,Liang L X.An investigation of fractal characteristics of marine shales in the southern China from Nitrogen adsorption data[J].Journal of Chemistry,2015,2015:1-12.
[24]Jiang F J,Chen D,Chen J,et al.Fractal analysis of shale pore structure of continental gas shale reservoir in the Ordos Basin,NW China[J].Energy & Fuels,2016,30(6):4676-4689.
[25]Liu X J,Xiong J,Liang L X.Investigation of pore structure and fractal characteristics of organic-rich Yanchang Formation shale in central China by nitrogen adsorption/desorption analysis[J].Journal of Natural Gas Science and Engineering,2015,22(7):62-72.
[26]Cao Taotao,Song Zhiguang,Wang Sibo,et al.A comparative study of the specific surface area and pore structure of different shales and their kerogens[J].Science China:Earth Sciences,2015,45(2):139-151.[曹涛涛,宋之光,王思波,等.不同页岩及干酪根比表面积和孔隙结构的比较研究[J].中国科学:地球科学,2015,45(2):139-151.]
[27]Wang M,Xue H T,Tian S S,et al.Fractal characteristics of Upper Cretaceous lacustrine shale from the Songliao Basin,NE China[J].Marine and Petroleum Geology,2015,67(11):144-153.
[28]Tang X L,Jiang Z X,Li Z,et al.The effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi formation in the southeastern Sichuan Basin,China[J].Journal of Natural Gas Science and Engineering,2015,23(3):464-473.
[29]Tang Shuheng,Fan Erping.Methane adsorption characteristics of clay mineralsin organic-rich shales[J].Journal of China Coal Society,2014,39 (8):1700-1706.[唐书恒,范二平.富有机质页岩中主要黏土矿物吸附甲烷特性[J].煤炭学报,2014,39(8):1700-1706.]

[1] 周立宏,蒲秀刚,肖敦清,李洪香,官全胜,林伶,曲宁. 渤海湾盆地沧东凹陷孔二段页岩油形成条件及富集主控因素[J]. 天然气地球科学, 2018, 29(9): 1323-1332.
[2] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[3] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[4] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[5] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[6] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[7] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[8] 王香增,张丽霞,姜呈馥,尹锦涛,高潮,孙建博,尹娜,薛莲花. 鄂尔多斯盆地差异抬升对长7页岩孔隙的影响——以东南部甘泉地区和南部渭北隆起地区为例[J]. 天然气地球科学, 2018, 29(5): 597-605.
[9] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[10] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[11] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[12] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[13] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[14] 林伯韬,陈渊,陈勉,金衍,蒋峥. 多峰孔径分布拟合模型在页岩孔隙结构分析中的应用[J]. 天然气地球科学, 2018, 29(3): 397-403.
[15] 曹涛涛,邓模,宋之光,刘光祥,黄俨然,Andrew Stefan Hursthouse. 黄铁矿对页岩油气富集成藏影响研究[J]. 天然气地球科学, 2018, 29(3): 404-414.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨振恒,魏志红,何文斌,范明,俞凌杰,徐二社,钱门辉. 川东南地区五峰组—龙马溪组页岩现场解吸气特征及其意义[J]. 天然气地球科学, 2017, 28(1): 156 -163 .
[2] 王志荣,贺平,郭志伟,陈玲霞,徐培远. 水力压裂条件下“三软”煤层压裂渗透模型及应用[J]. 天然气地球科学, 2017, 28(3): 349 -355 .
[3] 杨晓东,张苗,魏巍,李娟,傅雪海. 沁水盆地古县区块煤系“三气”储层孔隙特征对比[J]. 天然气地球科学, 2017, 28(3): 356 -365 .
[4] 钱凯,孙晓惠,许小琼,韩荣花,范云,魏星,昌新玲,任珠琳,崔亚亚. 下印度河盆地石油地质、油气分布及油气富集区特征[J]. 天然气地球科学, 2017, 28(12): 1797 -1809 .
[5] 陈瑞银, 米敬奎, 陈建平. 煤热压实验成熟度的地质标定[J]. 天然气地球科学, 2018, 29(1): 96 -102 .