天然气地球科学

• 非常规天然气 • 上一篇    下一篇

沁水盆地古县区块煤系“三气”储层孔隙特征对比

杨晓东1,张苗2,魏巍1,李娟1,傅雪海2   

  1. 1.山西省煤炭地质物探测绘院,山西 晋中 030600;
    2.中国矿业大学资源与地球科学学院,江苏 徐州 221116
  • 收稿日期:2016-07-21 修回日期:2016-09-11 出版日期:2017-03-10 发布日期:2017-03-10
  • 作者简介:杨晓东(1974-),男,山西长子人,工程师,主要从事地震勘探资料采集、处理、解释研究. E-mail:120980975@qq.com.
  • 基金资助:

    山西省科技厅“煤层气、页岩气资源潜力评价及共探共采选区研究”(编号:MQ2014-02)资助.

Comparison study of three natural gases reservoirs pore properties in Guxian block,Qinshui Basin

Yang Xiao-dong1,Zhang Miao2,Wei Wei1,Li Juan1,Fu Xue-hai2   

  1. 1.Shanxi Provincial Coal Geological,Geophysical Prospecting,Surveying and Mapping Institute,Jinzhong 030600,China;
    2.School of Resources and Geoscience,China University of Mining and Technology,Xuzhou 221116,China
  • Received:2016-07-21 Revised:2016-09-11 Online:2017-03-10 Published:2017-03-10

摘要:

孔隙发育特征对非常规天然气赋存和运移有着重要的影响。采用高压压汞实验对沁水盆地古县区块煤系煤、泥页岩、砂岩等12件样品孔隙特征进行了对比研究。结果表明:煤、泥页岩、砂岩压汞孔隙度之比为1∶0.49∶0.78;孔容中值孔径和比表面积中值孔径之比分别为1∶1.64∶15.43和1∶1.63∶2.73;总孔容、总比表面积比值分别为1∶0.27∶0.43和1∶0.15∶0.09。煤储层总孔容、总比表面积均远大于泥页岩和砂岩储层;泥页岩储层孔径结构整体与煤储层相似,大孔和微孔发育,过渡孔次之,中孔最差;砂岩储层微孔发育极差,大孔、中孔和过渡孔同等发育。煤储层微孔比表面积占绝对优势,泥页岩和砂岩储层微孔所占比例有所降低,而大孔、中孔和过渡孔的比例均有明显增加;煤储层孔径结构表现为“双峰型”和“多峰型”,砂岩储层为“多峰型”,泥页岩“单峰型”、“双峰型”、“多峰型”均有出现;煤储层压汞曲线主要为平行型和反S型,砂岩储层主要是M型,泥页岩储层主要为双S型、反S型和尖棱型。

关键词: 煤系气储层, 孔隙, 压汞, 对比, 沁水盆地

Abstract:

The development features of the pores have very important influence on the unconventional natural gas migration and occurrence.The paper adopted the high-pressure mercury intrusion to perform a comparative study on the pore properties of four coal samples,fives shales and three tight sandstones in Guxian block,Qinshui Basin.This study shows that the pressurized mercury porosity ratio,the median pore diameter ratio of volume and median pore diameter ratio of area of coal,shale and sandstone is 1∶0.49∶0.78,1∶1.64∶15.43 and 1∶1.63∶2.73 respectively.The total intrusion volume ratio and the total pore area is 1∶0.27∶0.43 and 1∶0.15∶0.09 respectively.The total pore volume and total pore area of coals are greater than shales and sandstones.As for the pore structure,shales have the similar structure with coals,i.e.,macropore and micropore were more developed,transitional span was middle,and the mesopore was least developed.Unlike coals and shales,the sandstones have the least developed micropore,and the macropore,mesopore and the transitional span are almost similarly developed.In the coal reservoirs,the micropore specific surface accounted for 90% proportion,in the shale and sandstone reservoirs,the proportion of micropore decreased,and the proportion of macropore,transitional span and mesopore increased.The pore structure of coals has double peak types and multi peak types,and sandstones have multi peak types.The shale reservoirs have three types of single peak and double peaks and multi peak types.In this paper,the mercury-injection curves of twelve samples are classified,the curves of coal are “parallel type” and “opposite S” type,the curves of sandstones are “M” type,the shales are “double S” type,“opposite S” type and “sharp Arris” types.

Key words: Natural gases reservoirs, Pore properties, High-pressure mercury intrusion, Comparison, Qinshui Basin

中图分类号: 

  • TE122.2+3

[1]Wang Tong,Wang Qingwei,Fu Xuehai.The significance and the systematic research of the unconventional gas in coal measures[J].Coal Geology & Exploration,2014,2014,42(1):24-27.[王佟,王庆伟,傅雪海.煤系非常规天然气的系统研究及其意义[J].煤田地质与勘探,2014,42(1):24-27.]
[2]Olson T,Hobbs B,Brooks R,et al.Paying off for Tom Brown in White River Dom Field’s tight sandstone,deep coals[R].Natural Gas White Papers:The American Oil and Gas Reports,2002:67-75.
[3]Liang Bing,Shi Yingshuang,Sun Weiji,et al.Reservoir forming characteristics of“the three gases”in coal measure and the possibility of commingling in China[J].Journal of China Coal Society,2016,41(1):167-173.[JP3][梁冰,石迎爽,孙维吉,等.中国煤系“三气”成藏特征及共采可能性[J].煤炭学报,2016,41(1):167-173.]
[4]Zhang Shouren.Proposed effective developing method for the deep coalbed methane[J].China Coalbed Methane,2011,8(4):18-21.[张守仁.深煤层煤层气开效途径展望[J].中国煤层气,2011,8(4):18-21.]
[5]Qin Yong,Shen Jian,Shen Yulin.Joint mining compatibility of superposed gas-bearing systems: A general geological problem for extraction of three natural gases and deep CBM in coal series[J].Journal of China Coal Society,2016,41(1):14-23.[秦勇,申建,沈玉林.叠置含气系统共采兼容性—煤系“三气”及深部煤层气开采中的共性地质问题[J].煤炭学报,2016,41(1):14-23.]
[6]Chen Xiangjun,Liu Jun,Wang Lin,et al.Influence of pore size distribution of different metamorphic grade of coal on adsorption constant[J].Journal of China Coal Society,2013,38(2):294-300.[陈向军,刘军,王林,等.不同变质程度煤的孔径分布及其对吸附常数的影响[J].煤炭学报,2013,38(2):294-300.]
[7]Yang Feng,Ning Zhengfu,Kong Detao,et al.Pore structure ofshales from high pressure mercury injection and nitrogen adsorption method[J].Natural Gas Geoscience,2013,24(3):450-455.[杨峰,宁正福,孔德涛,等.高压压汞法和氮气吸附法分析页岩孔隙结构[J].天然气地球科学,2013,24(3):450-455.]
[8]Jiao Kun.The Characterization,Genesis and Evolution of Nanopores in Coals and Shales[D].Nanjing:Nanjing University,2014.[焦堃.煤与泥页岩纳米孔隙的成因、演化机制与定量表征[D].南京:南京大学,2014.]
[9]Li Yuxi,Qiao Dewu,Jiang Wenli.Gas content of gas-bearing shale and its geological evaluation summary[J].Geological Bulletin of China,2011,30(2/3):308-317.[李玉喜,乔德武,姜文利.页岩气含气量和页岩气地质评价综述[J].地质通报,2011,30(2):308-317.]
[10]Bi He,Jiang Zhenxue,Li Peng,et al.Shale reservoir characteristics and its influence on gas content of Wufeng-Longmaxi Formation in the Southeastern Chongqing[J].Natural Gas Geoscience,2014,25(8):1275-1283.[毕赫,姜振学,李鹏,等.渝东南地区黔江凹陷五峰组_龙马溪组页岩储层特征及其对含气量的影响[J].天然气地球科学,2014,25(8):1275-1283.]
[11]Jiang Zhenxue,Tang Xianglu,Li Zhuo,et al.The whole-aperture pore structure characteristics and its effect on gas content of the Longmaxi Formation shale in the southeastern Sichuan Basin[J].Earth Science Frontiers,2016,23(2):126-134.[姜振学,唐相路,李卓,等.川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J].地学前缘,2016,23(2):126-134.]
[12]Li Ming.Structure Evolution and Deformation Mechanism of Tectonically Deformed Coal[D].Xuzhou:China University of Mining & Technology,2013.[李明.构造煤演化及其成因机制[D].徐州:中国矿业大学,2013.]
[13]Fu Xhuhai,Qin Yong,Wei Chongtao.Coalbed Methane Geology[M].Xu Zhou:China University of Mining and Technology Press,2007.[傅雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社,2007.]
[14]Dong Xinxiu.Pore Structure Characteristics And Comprehensive Evaluation Method Study Of Medium- High Rank Coal Reservoir[D].Qinhuangdao:Yanshan University,2015.[董新秀.中高阶煤储层孔隙结构特征及综合评价方法研究[D].秦皇岛:燕山大学,2015.]
[15]Chen Shangbin,Xia Xiaohong,Qin Yong,et al.Classification of pore structures in shale gas reservoir at the Longmaxi Formation in the south of Sichuan Basin[J].Journal of China Coal Society,2013,38(5):760-765.[陈尚斌,夏筱红,秦勇,等.川南富集区龙马溪组页岩气储层孔隙结构分类[J].煤炭学报,2013,38(5):760-765.]
[16]Zhu Yanming,Wang Yang,Chen Shangbin,et al.Qualitative-quantitative multiscale characterization of pore structures in shale reservoirs:A case study of Longmaxi Formation in the Upper Yangtze area[J].Earth Science Frontiers,2016,23(1):154-163.[朱炎铭,王阳,陈尚斌,等.页岩储层孔隙结构多尺度定性—定量综合表征:以上扬子海相龙马溪组为例[J].地学前缘,2016,23(1):154-163.]
[17]Sang Shuxun,Qin Yong,Fan Bingheng,et al.Features of low rank coal reservoir in limnic basins[J].Journal of China University of Mining & Technology,2001,30(4):341-345.[桑树勋,秦勇,范炳恒,等.陆相盆地低煤级煤储层特征研究——以准噶尔、吐哈盆地为例[J].中国矿业大学学报,2001,30(4):341-345.]
[18]Song Yan,Zhang Xinmin,Liu Shaobo,et al.Basic Theory of Coalbed Methane Geology and Development in China[M].Beijing:Science Publishing Press,2012.[宋岩,张新民,柳少波,等.中国煤层气地质与开发基础理论[M].北京,科学出版社,2012:55.]

[1] 李梦茹,唐友军,刘岩,胡辉,贺其川. 江陵凹陷不同地区原油地球化学特征及油源对比[J]. 天然气地球科学, 2018, 29(9): 1240-1251.
[2] 张世铭,王建功,张小军,张婷静,曹志强,杨麟科. 酒西盆地间泉子段储层流体赋存及渗流特征[J]. 天然气地球科学, 2018, 29(8): 1111-1119.
[3] 程鸣,傅雪海,张苗,程维平,渠丽珍. 沁水盆地古县区块煤系“三气”储层覆压孔渗实验对比研究[J]. 天然气地球科学, 2018, 29(8): 1163-1171.
[4] 李滔,李闽,张烈辉,田山川,赵潇雨,郑玲丽. 微多孔介质迂曲度与孔隙结构关系[J]. 天然气地球科学, 2018, 29(8): 1181-1189.
[5] 裴立新,刚文哲,朱传真,刘亚洲,何文军,向宝力,董岩. 准噶尔盆地烷烃气碳同位素组成及来源[J]. 天然气地球科学, 2018, 29(7): 1020-1030.
[6] 王朋飞,姜振学,吕鹏,金璨,李鑫,黄璞. 重庆周缘下志留统龙马溪组和下寒武统牛蹄塘组页岩有机质孔隙发育及演化特征[J]. 天然气地球科学, 2018, 29(7): 997-1008.
[7] 游利军,王哲,康毅力,张杜杰. 致密砂岩孔渗对盐析的响应实验研究[J]. 天然气地球科学, 2018, 29(6): 866-872.
[8] 邓焱,胡国艺,赵长毅. 四川盆地龙岗气田长兴组—飞仙关组天然气地球化学特征及成因[J]. 天然气地球科学, 2018, 29(6): 892-907.
[9] 王香增,张丽霞,姜呈馥,尹锦涛,高潮,孙建博,尹娜,薛莲花. 鄂尔多斯盆地差异抬升对长7页岩孔隙的影响——以东南部甘泉地区和南部渭北隆起地区为例[J]. 天然气地球科学, 2018, 29(5): 597-605.
[10] 倪新锋,沈安江,韦东晓,乔宇婷,王莹. 碳酸盐岩沉积学研究热点与进展:AAPG百年纪念暨2017年会及展览综述[J]. 天然气地球科学, 2018, 29(5): 729-742.
[11] 钟 佳,尤丽,张迎朝,曲希玉,代龙,吴仕玖. 琼东南盆地乐东—陵水凹陷黄流组峡谷水道储层成岩作用与孔隙演化[J]. 天然气地球科学, 2018, 29(5): 708-718.
[12] 王遥平,邹艳荣,史健婷,石军. 化学计量学在油—油和油—源对比中的应用现状及展望[J]. 天然气地球科学, 2018, 29(4): 452-467.
[13] 刘喜杰,马遵敬,韩冬,王海燕,马立涛,葛东升. 鄂尔多斯盆地东缘临兴区块致密砂岩优质储层形成的主控因素[J]. 天然气地球科学, 2018, 29(4): 481-490.
[14] 林伯韬,陈渊,陈勉,金衍,蒋峥. 多峰孔径分布拟合模型在页岩孔隙结构分析中的应用[J]. 天然气地球科学, 2018, 29(3): 397-403.
[15] 蔡春芳. 有机硫同位素组成应用于油气来源和演化研究进展[J]. 天然气地球科学, 2018, 29(2): 159-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚泾利,王程程,陈娟萍,高岗,王飞雁,李晓凤,李佳烨,刘岩. 鄂尔多斯盆地马家沟组盐下碳酸盐岩烃源岩分布特征[J]. 天然气地球科学, 2016, 27(12): 2115 -2126 .
[2] 魏国齐,王志宏,李剑,杨威,谢增业. 四川盆地震旦系、寒武系烃源岩特征、资源潜力与勘探方向[J]. 天然气地球科学, 2017, 28(1): 1 -13 .
[3] 杨振恒,魏志红,何文斌,范明,俞凌杰,徐二社,钱门辉. 川东南地区五峰组—龙马溪组页岩现场解吸气特征及其意义[J]. 天然气地球科学, 2017, 28(1): 156 -163 .
[4] 王志荣,贺平,郭志伟,陈玲霞,徐培远. 水力压裂条件下“三软”煤层压裂渗透模型及应用[J]. 天然气地球科学, 2017, 28(3): 349 -355 .
[5] 郗兆栋,唐书恒,李俊,李雷. 沁水盆地中东部海陆过渡相页岩孔隙结构及分形特征[J]. 天然气地球科学, 2017, 28(3): 366 -376 .
[6] 邹才能, 赵群, 董大忠, 杨智, 邱振, 梁峰, 王南, 黄勇, 端安详, 张琴, 胡志明. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781 -1796 .
[7] 钱凯,孙晓惠,许小琼,韩荣花,范云,魏星,昌新玲,任珠琳,崔亚亚. 下印度河盆地石油地质、油气分布及油气富集区特征[J]. 天然气地球科学, 2017, 28(12): 1797 -1809 .
[8] 鲁新川,安永福,夏维民,胡子见,张顺存,史基安. 准噶尔盆地阜东斜坡区侏罗系三工河组沉积微相特征及对储层的控制[J]. 天然气地球科学, 2017, 28(12): 1810 -1820 .
[9] 杨志冬. 准噶尔盆地红山嘴油田红153井区二叠系夏子街组砂砾岩储层特征及影响因素[J]. 天然气地球科学, 2017, 28(12): 1829 -1838 .
[10] 郭佳佳,孙国强,龙国徽,管斌,康健,夏维民,陈波,史基安. 柴达木盆地北缘冷湖五号构造下侏罗统沉积—成岩环境分析[J]. 天然气地球科学, 2017, 28(12): 1839 -1845 .