天然气地球科学

• 天然气开发 • 上一篇    下一篇

沁水盆地寿阳区块煤层气排采动态成因机理及排采对策

康永尚1,2,张兵3,4,鱼雪1,王金1,姜杉钰1,叶建平5,张守仁3,4   

  1. 1.中国石油大学(北京)地球科学学院,北京 102249; 2.油气资源与探测国家重点实验室,北京 102249;
    3.中海石油(中国)有限公司非常规油气分公司,北京 100011;
    4.中联煤层气有限责任公司,北京 100011;
    5.中海石油(中国)有限公司非常规油气管理处,北京 100010
  • 收稿日期:2016-08-10 修回日期:2016-10-21 出版日期:2017-01-10 发布日期:2017-01-10
  • 作者简介:康永尚(1964-),男,河南登封人,教授,博士,主要从事非常规油气勘探开发地质工程以及海外油气项目储量和价值评估的教学和研究工作. E-mail:kangysh@sina.com.
  • 基金资助:

    国家科技重大专项(编号:2011ZX05042)资助.

Formation mechanism of well performance and CBMdevelopment strategy in Shouyang Block,Qinshui Basin

Kang Yong-shang1,2,Zhang Bing3,4,Yu Xue1,Wang Jin1,Jiang Shan-yu1,Ye Jian-ping5,Zhang Shou-ren3,4   

  1. 1.College of Geosciences,China University of Petroleum (Beijing),Beijing 102249,China;
    2.State Key Laboratory of Petroleum Resources and Prospecting,Beijing 102249,China;
    3.CNOOC China Limited,Unconventional Oil & Gas Branch,Beijing 100011,China;
    4.China United Coalbed Methane Corporation Ltd.,Beijing 100011,China;
    5.CNOOC China Limited,Unconventional Oil & Gas Administration,Beijing 100010,China
  • Received:2016-08-10 Revised:2016-10-21 Online:2017-01-10 Published:2017-01-10

摘要:

以寿阳区块的静态地质资料和动态排采资料为基础,分析了寿阳区块的排采动态特征并从系统分析观和地质因素2个方面解释了排采动态的成因机理,提出了寿阳区块的排采对策。研究表明:寿阳区块排采动态呈现出单井产水量高,产气量低或不见气的特点,合层排采井的典型日产水量大于单采井产水量之和,表现出“1+1>2”的现象;典型日产气量与典型日产水量呈现负向包络关系,高产水对产气有抑制作用;造成寿阳区块煤层气井高产水的原因有2个,一是寿阳井筒—排采煤层系统为开放系统,断裂或压裂缝沟通煤层上下的含水层,造成煤层气井低效降压;二是寿阳区块煤系地层中分支河道砂体发育,且因该区发育的断裂多为高倾角断裂,当多层合层排采时,断裂沟通含水层的概率大大上升。因此,在培育高产气井时,首先要避开断层开放型系统,远离断层,其次是避开垂直压裂缝压穿型系统,因寿阳区块煤层更易压裂,故压裂时要适当降低前期采用的压裂规模,针对具体井层,需根据顶底板隔水层的厚度,保证在不压穿顶底板隔水层的前提下,优化压裂规模,以实现在规避围岩含水层不利影响的条件下最大程度地改善煤储层的渗透率。

关键词: 煤层气, 寿阳区块, 排采动态, 包络关系, 含水层, 开放系统, 压裂规模优化

Abstract:

Based on the geological data and drainage dynamic data,the characteristics of drainage dynamic was analyzed,formation mechanism of well performance was explained from system theory and geological factors and CBM development strategy was proposed in Shouyang block.The study shows that the single well in Shouyang block is characteristized by “high water yield but low gas production” in the process of drainage.Multi-layer drainage produces more water than that of one layer,which leads to a phenomenon of “1+1>2”.The typical daily gas production shows a negative enveloping relationship with typical daily water production meaning that high water production is detrimental to gas production.There are two factors for high water production.First,the wellbore-drainage system is an open system since faults or vertical hydraulic fractures connect sandstone aquifers,which leads to low efficient depressurization.Second,with branch channel sand body extensively developed and high dip angle existed,faults easily connect sand aquifers for multi-layer drainage.Building a high productive well is essential to create a closed system borehole-drainage system by staying away faults firstly,and then avoiding vertical hydraulic fractures connecting sand aquifers.Since the coal seam is easier to fracturing,it is proposed to reduce the fracturing volume adopted before for future CBM exploration and development practice in Shouyang block.For a coal interval to be hydraulically fractured in a well,the fracturing volume should be optimized on considering the thickness of proof and floor aquifluids to avoid hydraulic link between the fracturing interval and nearby sandstone aquifers.

Key words: Coalbed methane, Shouyang CBM block, Well performance, Enveloping relationship, Aquifer, Open system, Fracturing volume optimization

中图分类号: 

  • TE33+2

[1]Zhao Xianzheng,Zhu Qingzhong,Sun Fenjin,et al.Practice and thought of coalbed methane exploration and development in Qinshui Basin[J].Journal of China Coal Society,2015,40(9):2131-2136.[赵贤正,朱庆忠,孙粉锦,等.沁水盆地高阶煤层气勘探开发实践与思考[J].煤炭学报,2015,40(9):2131-2136.][ZK)]
[2]
Wang Hongyan,Li Jingming,Ning Ning,et al.Practice & theory of CBM economic development in Qinshui Basin[J].Natural Gas Geosicence,2007,18(4):554-556.[王红岩,李景明,宁宁,等.沁水盆地煤层气商业性勘探开发实践及认识[J].天然气地球科学,2007,18(4):554-556.]
[3]Shao Longyi,Xiao Zhenghui,He Zhiping,et al.Palaeogeography and coal accumulation for coal measures of the  Carboniferous-Permian in Qinshui Basin,southeastern Shanxi Province[J].Journal of Paleogeography,2006.8(1):43-52.[邵龙义,肖正辉,何志平,等.晋东南沁水盆地石炭二叠纪含煤岩系古地理及聚煤作用研究[J].古地理学报,2006.8(1):43-52.]
[4]Wang Zhenyun,Tang Shuheng,Sun Pengjie,et al.Feasibility study of multi-layer drainage for No.3 and 9 coal seams in Shouyang Block,Qinshui Basin[J].Coal Geology of China,2013,25(11):21-26.[王振云,唐书恒,孙鹏杰,等.沁水盆地寿阳区块3号和9号煤层合层排采的可行性研究[J].中国煤炭地质,2013,25(11):21-26.]
[5]Liu Shenggui,Tu Kun,Fu Yu,et al.CBM recovery rate prediction method and well spacing optimization in Shouyang block[J].Journal of Liaoning Technical University:Natural Science,2015,34(8):892-897.[刘升贵,涂坤,付裕,等.寿阳区块煤层气采收率预测方法及井间距优化[J].辽宁工程技术大学学报:自然科学版,2015,34(8):892-897.]
[6]Lv Yumin,Liang Jianshe,Liu Yinghong,et al.Multi-level fuzzy comprehensive evaluation model for favorable coalbed methane development area based on logging information:A case of Shouyang block[J].Coal Geology & Exploration,2016,44(1):56-61.[吕玉民,梁建设,柳迎红,等.基于测井信息的煤层气有利区多层次模糊综合评价模型—以寿阳区块为例[J].煤田地质与勘探,2016,44(1):56-61.]
[7]Wang Jin,Kang Yongshang,Jiang Shanyu,et al.Reasons for water production difference of CBM wells in Shouyang block,Qinshui Basin,and prediction on favorable areas[J].Natural Gas Industry,2016,36(8):52-59.[王金,康永尚,姜杉钰,等.寿阳区块煤层气井产水差异原因分析和有利区预测[J].天然气工业,2016,36(8):52-59.]
[8]Kang Yongshang,Chen Jing,Zhang Bing,et al.Identification of aquifers influencing the drainage of coalbed methane wells in Shouyang exploration area,Qinshui Basin[J].Journal of China Coal Society,2016,41(9):2263-2272.[康永尚,陈晶,张兵,等.沁水盆地寿阳勘探区煤层气井排采水源层判识[J].煤炭学报,2016,41(9):2263-2272.]
[9]Kang Yongshang,Qin Shaofeng,Han Jun,et al.Typical dynamic index analysis method system for drainage and production dynamic curves of CBM wells[J].Journal of China Coal Society,2013,38(10):1825-1830.[康永尚,秦绍锋,韩军,等.煤层气井排采动态典型指标分析方法体系[J].煤炭学报,2013,38(10):1825-1830.]
[10]Wang Weixu,Wang Xiyou,Jiang Pei,et al.Causes of high water yield from CBM wells in Shunan area and measures research[C]//The Annual Workshop of Coalbed Methane in 2014.Beijing:Petroleum Industry Press,2014.[王维旭,王希友,蒋佩,等.蜀南地区煤层气高产水井分析及对策研究[C]//2014全国煤层气学术研讨会论文集.北京:石油工业出版社,2014.]
[11]Jiang Shanyu,Kang Yongshang,Zhang Shouren,et al.Analysis on influencing factors of drainage dynamic of wells and CBM development strategy in Shizhuang block[J].Natural Gas Geoscience,2016,27(6):1134-1142.[姜杉钰,康永尚,张守仁,等.沁水盆地柿庄区块煤层气井排采动态影响因素分析及开发对策研究[J].天然气地球科学,2016,27(6):1134-1142.]
[12]Zhang Peihe,Liu Yuhui,Wang Zhengxi,et al.Geological factors of production control of CBM well in south Qinshui Basin[J].Natural Gas Geoscience,2011,22(5):909-914.[张培河,刘钰辉,王正喜,等,基于生产数据分析的沁水盆地南部煤层气井产能控制地质因素研究[J].天然气地球科学,2011,22(5):909-914.]
[13]Shao Xianjie,Dong Xiucheng,Tang Dazhen,et al.Treatment technology and method of low-of-moderate production coalbed methane wells in Hancheng mining area[J].Natural Gas Geosicence,2014,25(3):435-443.[邵先杰,董秀成,汤达祯,等.韩城矿区煤层气中低产井治理技术与方法[J].天然气地球科学,2014,25(3):435-443.]
[14]Wang Bo,Sun Fenjin,Zhao Yang,et al.Study of hydrogelogical control on CBM enrichment and high producibility-Example from FZ CBM block in the Qinshui Basin[C]//The Annual Workshop of Coalbed Methane in 2014.Beijing:Petroleum Industry Press,2014.[王勃,孙粉锦,赵阳,等.煤层气富集高产的水文地质控气规律研究—以沁水盆地FZ区块为例[C]//2014 全国煤层气学术研讨会论文集.北京:石油工业出版社,2014.]
[15]Lu Xiaoxia,Huang Wenhui,Tang Xiuyi,et al.Impact of limestone of NO.15 coal seam roof on the coal bed methane exploitation,south Qinshui Basin[J].Geoscience,2012,26(3):518-526.[陆小霞,黄文辉,唐修义,等.沁水盆地南部15号煤层顶板灰岩特征对煤层气开采的影响[J现代地质,2012,26(3):518-526.]
[16]Chen Jing,Kang Yongshang,Guo Mingqiang,et al.Analysis on aquosity of Taiyuan formation limestones in Shouyang area,Qinshui Basin,central China[C]//The Annual Workshop of Coalbed Methane in 2014.Beijing:Petroleum Industry Press,2014.[陈晶,康永尚,郭明强,等.沁水盆地寿阳地区太原组灰岩含水性分析[C]//2014全国煤层气学术研讨会论文集.北京:石油工业出版社,2014.]
[17]Shao Longyi,Yang Zhiyu,Shang Xiaoxu,et al.Lithofacies palaeogeography of the Carboniferous and Permian in the Qinshui Basin,Shanxi Province,China[J].Journal of Paleogeography,2015,4(4):387-413.
[18]Wang Ping.A geomechanical technique-types and distribution of geostress under various tectonic forces[J].Acta Petrolei Sinica,1992,13(1):1-12.[王平.地质力学方法研究—不同构造力作用下地应力的类型和分布[J].石油学报,1992,13(1):1-12.]
[19]Wu Guodai,Sang Shuxun,Yang Zhigang,et al.Current research status and prospect of geo-stress impact on CBM exploration and exploitation[J].Coal Geology of China,2009,21(4):31-34.[吴国代,桑树勋,杨志刚,等.地应力影响煤层气勘探开发的研究现状与展望[J].中国煤炭地质,2009,21(4):31-34.]
[20]Meng Zhaoping,Tian Yongdong,Li Guofu.Theory and Method of Coalbed Methane Development Geology[M].Beijing:Science Press,2010:253-260.[孟召平,田永东,李国富.煤层气开发地质理论与方法[M].北京:科学出版社,2010:253-260.]
[21]Gu H,Siebrits E,Sabourov A.Hydraulic-fracture modeling with bedding plane interfacial slip[C].SPE 117445.Presented at the 2008 SPE Eastern Regional/AAPG Eastern Section Joint Meeting held in Pittsburgh,Pennsylvanian,USA,11-15-October 2008:1-8.
[22]Yang Huanqiang,Wang Ruihe,Zhou Weidong,et al.The study on affecting factors and characteristics about extention of vertical fractures on coal seam interface[C].The Annual Workshop of Coalbed Methane in 2014.Beijing:Petroleum Industry Press,2014.[杨焕强,王瑞和,周卫东,等.垂直裂缝在煤层界面的扩展及影响因素研究[C].2014全国煤层气学术研讨会论文集.北京:石油工业出版社,2014.]
[23]Zhang Xiaodong,Zhang Peng,Liu Hao,et al.Fracture extended model under hydraulic fracturing engineering for high rank coal reserviors[J].Journal of China University of Mining &Technology,2013,42(4):573-579.[张小东,张鹏,刘浩,等.高煤级煤储层水力压裂裂缝扩展模型研究[J].中国矿业大学学报,2013,42(4):573-579.]
[24]Feng Qing,Wu Caifang,Leibo.Coal/rock mechanics features of Qinshui Basin and fracturing crack control[J].Coal Science and Technology,2011,39(3):100-103.[冯晴,吴财芳,雷波.沁水盆地煤岩力学特征及其压裂裂缝的控制[J].煤炭科学技术,2011,39(3):100-103.]

[1] 吴丛丛,杨兆彪,孙晗森,张争光,李庚,彭辉. 云南恩洪向斜西南区垂向流体能量特征及有序开发建议[J]. 天然气地球科学, 2018, 29(8): 1205-1214.
[2] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[3] 单衍胜,毕彩芹,迟焕鹏,王福国,李惠. 六盘水地区杨梅树向斜煤层气地质特征与有利开发层段优选[J]. 天然气地球科学, 2018, 29(1): 122-129.
[4] 赵一民,陈强,常锁亮,田忠斌,桂文华. 基于边界要素二分的煤层气封存单元分类与评估[J]. 天然气地球科学, 2018, 29(1): 130-139.
[5] 张洲,王生维,周敏. 基于构造裂隙填图技术的煤储层裂隙发育特征预测与验证[J]. 天然气地球科学, 2017, 28(9): 1356-1362.
[6] 金凤鸣,贾善坡,张辉,林建品,尚翠娟,刘静,刘团辉,赵政嘉,席增强. 京津冀地区断陷盆地含水层储气库评价体系及目标优选[J]. 天然气地球科学, 2017, 28(9): 1433-1445.
[7] 王玫珠,王勃,孙粉锦,赵洋,丛连铸,杨焦生,于荣泽,罗金洋,周红梅. 沁水盆地煤层气富集高产区定量评价[J]. 天然气地球科学, 2017, 28(7): 1108-1114.
[8] 郭广山,柳迎红,张苗,吕玉民. 沁水盆地柿庄南区块排采水特征及其对煤层气富集的控制作用[J]. 天然气地球科学, 2017, 28(7): 1115-1125.
[9] 马东民,李沛,张辉,李卫波,杨甫. 长焰煤中镜煤与暗煤吸附/解吸特征对比[J]. 天然气地球科学, 2017, 28(6): 852-862.
[10] 朱学申,梁建设,柳迎红,王存武,廖夏,郭广山,吕玉民. 煤层气井产水影响因素及类型研究——以沁冰盆地柿庄南区块为例[J]. 天然气地球科学, 2017, 28(5): 755-760.
[11] 倪小明, 李志恒,王延斌,吴建光. 沁水盆地中部断层发育区煤层气开发有利块段优选[J]. 天然气地球科学, 2017, 28(4): 602-610.
[12] 郭晨,夏玉成,卢玲玲,任亚平. 黔西比德—三塘盆地多层叠置独立含煤层气系统发育规律与控制机理[J]. 天然气地球科学, 2017, 28(4): 622-632.
[13] 申建,张春杰,秦勇,张兵. 鄂尔多斯盆地临兴地区煤系砂岩气与煤层气共采影响因素和参数门限[J]. 天然气地球科学, 2017, 28(3): 479-487.
[14] 郭晓龙,李璇,代春萌,边海军,许旭华,许晶. 煤层气地球物理预测方法[J]. 天然气地球科学, 2017, 28(2): 287-295.
[15] 马平华,霍梦颖,何俊,彭英明,邵先杰,接敬涛. 煤层气井压裂影响因素分析与技术优化——以鄂尔多斯盆地东南缘韩城矿区为例[J]. 天然气地球科学, 2017, 28(2): 296-304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!