天然气地球科学

• 非常规天然气 • 上一篇    下一篇

海相页岩裂缝孔隙发育机制及地质意义

王玉满,李新景,董大忠,张晨晨,王淑芳,黄金亮,管全中   

  1. 中国石油勘探开发研究院, 北京 100083
  • 收稿日期:2016-04-16 修回日期:2016-06-02 出版日期:2016-09-10 发布日期:2016-09-10
  • 作者简介:王玉满(1968-),男,湖北荆门人,高级工程师,博士,主要从事沉积储层与非常规油气地质研究. E-mail:wangyuman@petrochina.com.cn.
  • 基金资助:
    中国石油第四次油气资源评价项目(编号:2013E-050202);国家重点基础研究发展计划(“973”)项目(编号:2013CB228001);国家科技重大专项(编号:2011ZX05018-001)联合资助.

Development mechanism of fracture pores in marine shale and its geological significance

Wang Yu-man,Li Xin-jing,Dong Da-zhong,Zhang Chen-chen,Wang Shu-fang,Huang Jin-liang,Guan Quan-zhong   

  1. Research Institute of Petroleum Exploration & Development,PetroChina, Beijing 100083, China
  • Received:2016-04-16 Revised:2016-06-02 Online:2016-09-10 Published:2016-09-10

摘要: 天然裂缝形成机制研究是开展页岩气富集机理研究和“甜点区”优选的基础性工作。以国内外6个大型页岩气田为主要研究对象,通过开展黑色页岩天然裂缝发育特征及其形成机制研究发现,海相页岩天然裂缝的形成至少存在前陆盆地冲断褶皱与页岩层滑脱变形、晚期构造反转与页岩层滑脱变形、走滑断层周期性活动等3种机制。前陆盆地冲断褶皱与页岩层滑脱变形是北美地台Appalachian-Ouachita褶皱带的诸多前陆盆地普遍存在的页岩地层造缝机制,一般具有水平剪切作用时间长、页岩层发生水平位移距离较远、在页岩层中产生的共轭裂缝和微裂隙十分发育等特点。晚期构造反转与页岩层滑脱变形是裂谷盆地和叠合盆地中重要的造缝机制,页岩地层天然裂缝发育程度主要与晚期构造反转的强度和规模有关。走滑断层周期性活动主要存在于少数盆地的局部构造带,造缝区域相对局限。通过开展海相页岩裂缝孔隙形成机制探讨,认为有2点地质意义值得关注:一是基于富有机质页岩层滑脱作用形成的裂缝型气层是页岩气开发的重要“甜点”;二是中国南方海相页岩分布区具有形成裂缝型页岩气藏的有利构造条件,其中四川盆地龙马溪组发育裂缝型页岩气“甜点”,勘探前景值得期待。

关键词: 海相页岩, 天然裂缝, 裂缝孔隙度, 前陆盆地, 构造反转, 滑脱带

Abstract: Formation mechanism of natural fracture is fundamental to the research of shale gas concentration mechanism and "sweet spot" selection.This paper studied the characteristics and formation mechanism of natural fracture in black shale based on six large domestic and foreign gas fields,and the results showed that there are at least three kinds of mechanisms for the natural fracture in marine shale:Foreland thrust-fold and detachment-deformation of shale bed,late-stage tectonic inversion and detachment-deformation of shale bed,as well as periodic movement of strike-slip fault.Foreland thrust-fold and decollement-deformation of shale bed,which is generally characterized by long time of horizontal shearing,large horizontal displacement and well-developed conjugated and micro-fracture,are very common in many forelands in Appalachian-Ouachita fold belt of North America platform.Late-stage tectonic inversion and decollement-deformation of shale bed are important fracture-mechanism in rift basins and superimposed basins,with the development degree of natural fracture depending on the intensity and scale of tectonic inversion.Periodic movement of strike-slip fault mainly exists in partial tectonic belt of a few basins with relatively limited fracture area.According to the formation mechanism of natural fracture in marine shale,two aspects of geological significance are emphasized:Fractured-reservoir forming from the decollement of shale bed is important “sweet spot” in shale gas development;tectonic conditions of marine shale in southern China are favorable for the formation of fractured shale gas reservoir,especially the Longmaxi Formation in Sichuan Basin with fractured-sweet spot and good exploration prospect.

Key words: Marine shale, Natural fracture, Fracture porosity, Foreland basin, Tectonic inversion, Decollement zone

中图分类号: 

  • TE122.2

[1]Curtis J B.Fractured shale-gas systems[J].AAPG Bulletin,2002,86(11):1921-1938.
[2]Jenkins C,Ouenes A,Zellou A,et al.Quantifying and predicting naturally fractured reservoir behavior with continuous fracture models[J].AAPG Bulletin,2009,93(11):1597-1608.
[3]Wang Yuman,Huang Jinliang,Wang Shufang,et al.Dissection of two calibrated areas of the Silurian Longmaxi Formation,Changning and Jiaoshiba,Sichuan Basin[J].Natural Gas Geoscience,2016,27(3):423-432.[王玉满,黄金亮,王淑芳,等.四川盆地长宁、焦石坝志留系龙马溪组页岩气刻度区精细解剖[J].天然气地球科学,2016,27(3):423-432.]
[4]Wang Yuman,Wang Shufang,Dong Dazhong,et al.Lithofacies characterization of Longmaxi Formation of the Lower Silurian,southern Sichuan[J].Earth Science Frontiers,2016,23(1):119-133.[王玉满,王淑芳,董大忠,等.川南下志留统龙马溪组页岩岩相表征[J].地学前缘,2016,23(1):119-133.]
[5]Wang Yuman,Dong Dazhong,Yang Hua,et al.Quantitative characterization of reservoir space in the Lower Silurian Longmaxi shale,southern Sichuan,China[J].Science China:Earth Sciences,2014,57:313-322.[王玉满,董大忠,杨桦,等.川南下志留统龙马溪组页岩储集空间定量表征[J].中国科学:地球科学,2014,44(6):1348-1356.]
[6]Wang Yuman,Dong Dazhong,Li Xinjing,et al.Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in the Sichuan Basin and its peripheral areas [J].Natural Gas Industry,2015,35(3):12-21.[王玉满,董大忠,李新景,等.四川盆地及其周缘下志留统龙马溪组层序与沉积特征[J].天然气工业,2015,35(3):12-21.]
[7]Wang Yuman,Huang Jinliang,Li Xinjing,et al.Quantitative characterization of fractures and pores in shale beds of Lower Silurian,Longmaxi Formation,Sichuan Basin[J].Natural Gas Industry,2015,35(9):8-15.[王玉满,黄金亮,李新景,等.四川盆地下志留统龙马溪组页岩裂缝孔隙定量表征[J].天然气工业,2015,35(9):8-15.]
[8]Zou Caineng,Dong Dazhong,Wang Yuman,et al.Shale gas in China:Characteristics,challenges and prospects (Ⅰ) [J].Petroleum Exploration and Development,2015,42(6):689-701.[邹才能,董大忠,王玉满,等.中国页岩气特征、挑战及前景(一)[J].石油勘探与开发,2015,42(6):689-701.]
[9]Ding Wenlong,Xu Changchun,Jiu Kai,et al.The research progress of shale fractures[J].Advance in Earth Sciences,2011,26(2):135-144.[丁文龙,许长春,久凯,等.泥页岩裂缝研究进展[J].地球科学进展,2011,26(2):135-144.]
[10]Guo Tonglou,Liu Ruobing.Implications from marine shale gas exploration breakthrough in complicated structural area at high thermal stage:Taking Longmaxi Formation in Well JYl as an examp1e[J].Natural Gas Geoscience,2013,24(4):643-651.[郭彤楼,刘若冰.复杂构造区高演化程度海相页岩气勘探突破的启示——以四川盆地东部盆缘JY1井为例[J].天然气地球科学,2013,24(4):643-651.]
[11]Guo Tonglou,Zhang Hanrong.Formation and enrichment mode of Jiaoshiba shale gas field,Sichuan Basin[J].Petroleum Exploration and Development,2014,41(1):28-35 .[郭彤楼,张汉荣.四川盆地焦石坝页岩气田形成与富集高产模式[J].石油勘探与开发,2014,41(1):28-35.]
[12]Meng Qinggui,Hou Guiting.Geologic characteristic and implications of the Marcellus shale gas play in the Appalachian Basin[J].China Petroleum Exploration,2012,17(1):67-73.[孟庆峰,侯贵廷.阿巴拉契亚盆地Marcellus页岩气藏地质特征及启示[J].中国石油勘探,2012,17(1):67-73.]
[13]Zagorski W A,Bowman D C,Emery M,et al.An overview of some key factors controlling well productivity in core areas of the Appalachian Basin Marcellus shale play[EB/OL].(2011-11-01)[2015-06-01].http://www.searchanddiscovery.com/pdfz/documents/2011/110147zagorski/ndx_zagorski.pdf.html.[JP]
[14]Gillespie P,van Hagen J,Wessels S,et al.Hierarchical kink banddevelopment in the AppalachianPlateau decollement sheet[J].AAPG Bulletin,2015,99(1):51-76.
[15]Jacobi D,Hughes B,Breig J,et al.Effective Geochemical and Geomechanical Characterization of Shale Gas Reservoirs from the Wellbore Environment:Caney and the Woodford shale[C].SPE Annual Technical Conference and Exhibition,4-7 October,New Orleans,Louisiana.SPE124231.2009.
[16]Hammes U,Hamlin H S,Ewing T E.Geologic analysis of the Upper Jurassic Haynesville Shale in east Texas and west Louisiana[J].AAPG Bulletin,2011,95(10):1643-1666.
[17]LeCompte B,Franquet J A,Jacobi D,et al.Evaluation of Haynesville Shale Vertical Well Completions with Mineralogy Based Approach to Reservoir Geomechanics[C].SPE Annual Technical Conference and Exhibition,4-7 October,New Orleans,Louisiana.SPE124227.2009.
[18]Fan Linpei,Li Yongjun,Bai Shengbao.Geologiccharacteristic of the Haynesville shale gas play in U.S.A.[J].Journal of Yangtze University :Natural Science Edition,2014,11(2):81-83.[范琳沛,李勇军,白生宝.美国Haynesville页岩气藏地质特征分析[J].长江大学学报:自然科学版,2014,11(2):81-83.]
[19]Yan Cunzhang,Dong Dazhong,Cheng Keming,et al.Geology Books of Shale Gas Exploration and Development:Exploration and Development Progress of Shale Gas in North America[M].Beijing:Petroleum Industry Press,2009:69-271.[阎存章,董大忠,程克明,等.页岩气地质与勘探开发实践丛书——北美地区页岩气勘探开发新进展[M].北京:石油工业出版社,2009:69-271.]
[20]Gale J F W,Reed R M,Holder J.Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments[J].AAPG Bulletin,2007,91(4):603-622.
[21]Li Qiusheng,Gao Rui,Wang Haiyan,et al.Lithospsheric structure of northeastern Sichuan-Dabashan basin-range system and top-deep deformation coupling[J].Acta Petrologica Sinica,2011,27(3):612-620.[李秋生,高锐,王海燕,等.川东北—大巴山盆山体系岩石圈结构及浅深变形耦合[J].岩石学报,2011,27(3):612-620.]

[1] 王勇飞, 赵向原, 刘成川. 川东北元坝地区长兴组礁滩相储层裂缝特征及主控因素[J]. 天然气地球科学, 2019, 30(7): 973-981.
[2] 吴海, 严少怀, 赵孟军, 卓勤功, 王龙, 白东来, 张月, 沙威. 库车前陆盆地东西部油气成藏过程差异性分析——以吐北1和迪那2构造为例[J]. 天然气地球科学, 2019, 30(7): 1027-1036.
[3] 杨娟, 王作栋, 薄海波, 张婷, 吉生军, 王静莹. 下马岭组油页岩热模拟实验抽提物中三芴系列化合物演化特征[J]. 天然气地球科学, 2019, 30(7): 1063-1071.
[4] 张辉, 尹国庆, 王海应. 塔里木盆地库车坳陷天然裂缝地质力学响应对气井产能的影响[J]. 天然气地球科学, 2019, 30(3): 379-388.
[5] 洪峰,姜林,卓勤功,鲁雪松,马行陟,郝加庆. 中国前陆盆地异常高压气藏类型[J]. 天然气地球科学, 2018, 29(3): 317-327.
[6] 韩秀玲,杨贤友,熊春明,石阳,高莹,张福祥,连胜江,李向东,王萌,李福涛. 超深裂缝性厚层改造效果影响因素分析与高效改造对策[J]. 天然气地球科学, 2017, 28(8): 1280-1286.
[7] 朱彤,俞凌杰,王烽. 四川盆地海相、湖相页岩气形成条件对比及开发策略[J]. 天然气地球科学, 2017, 28(4): 633-641.
[8] 何岩峰,成景烨,窦祥骥,王相,唐波. 页岩天然裂缝网络渗透率模型研究[J]. 天然气地球科学, 2017, 28(2): 280-286.
[9] 刘君龙,纪友亮,杨克明,朱宏权,潘亚男,余加松,王天云. 川西地区中侏罗世前陆盆地河流层序结构及控制因素[J]. 天然气地球科学, 2017, 28(1): 14-25.
[10] 刘春,张荣虎,张惠良,王波,黄伟. 塔里木盆地库车前陆冲断带不同构造样式裂缝发育规律:证据来自野外构造裂缝露头观测[J]. 天然气地球科学, 2017, 28(1): 52-61.
[11] 吴海,赵孟军,白东来,周延钊,周彦臣. 库车前陆盆地吐北2构造油气充注过程分析[J]. 天然气地球科学, 2016, 27(4): 600-608.
[12] 刘洪林,王红岩,孙莎莎,吝文. 南方海相页岩气超压特征及主要选区指标研究[J]. 天然气地球科学, 2016, 27(3): 417-422.
[13] 王玉满,黄金亮,王淑芳,董大忠,张晨晨,管全中. 四川盆地长宁、焦石坝志留系龙马溪组页岩气刻度区精细解剖[J]. 天然气地球科学, 2016, 27(3): 423-432.
[14] 付海峰, 刘云志, 梁天成, 翁定为, 卢拥军, 修乃岭. 四川省宜宾地区龙马溪组页岩水力裂缝形态实验研究[J]. 天然气地球科学, 2016, 27(12): 2231-2236.
[15] 刘卫彬, 周新桂, 李世臻, 张世奇. 构造裂缝对低孔低渗储层的影响作用研究——以东濮凹陷沙三段为例[J]. 天然气地球科学, 2016, 27(11): 1993-2004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[2] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[3] 马立祥;. 断层封闭性研究在烃类聚集系统分析中的意义[J]. 天然气地球科学, 2000, 11(3): 1 -8 .
[4] 廖成君. VSP技术在锦612复杂断块油藏开发部署研究中的应用[J]. 天然气地球科学, 2005, 16(1): 117 -122 .
[5] 杜乐天;. 地球的5个气圈与中地壳天然气开发[J]. 天然气地球科学, 2006, 17(1): 25 -30 .
[6] 周世新;邹红亮;解启来;贾星亮;. 沉积盆地油气形成过程中有机-无机相互作用[J]. 天然气地球科学, 2006, 17(1): 42 -47 .
[7] 曹华;龚晶晶;汪贵锋;. 超压的成因及其与油气成藏的关系[J]. 天然气地球科学, 2006, 17(3): 422 -425 .
[8] 王杰,刘文汇,秦建中,张隽. 中国东部幔源气藏存在的现实性与聚集成藏的规律性[J]. 天然气地球科学, 2007, 18(1): 19 -26 .
[9] 杜乐天. 国外天然气地球科学研究成果介绍与分析-----以索科洛夫的著作为主线[J]. 天然气地球科学, 2007, 18(1): 1 -18 .
[10] 孔庆芬,王可仁. 鄂尔多斯盆地西缘奥陶系烃源岩热模拟试验研究[J]. 天然气地球科学, 2006, 17(2): 187 -191 .