天然气地球科学

• 天然气地质学 • 上一篇    下一篇

基于多元回归的页岩脆性指数预测方法研究

陈祖庆,郭旭升,李文成,李金磊   

  1. (中国石油化工股份有限公司勘探分公司,四川 成都 610041)
  • 收稿日期:2015-08-17 修回日期:2016-01-26 出版日期:2016-03-10 发布日期:2016-03-10
  • 作者简介:陈祖庆(1968-),男,广西荔浦人,教授级高级工程师,主要从事石油物探技术研究及管理工作. E-mail:gxlpczq@163.com.
  • 基金资助:

    中国石油化工集团公司重大专项“四川盆地周缘下组合页岩气形成条件与有利区带评价”(编号:P13129)资助.

Study on shale brittleness index prediction based on multivariate regression method

Chen Zu-qing,Guo Xu-sheng,Li Wen-cheng,Li Jin-lei   

  1. (Research Institute of SINOPEC Exploration Company,Chengdu 610041,China)
  • Received:2015-08-17 Revised:2016-01-26 Online:2016-03-10 Published:2016-03-10

摘要:

页岩的脆性指数是页岩气水平井体积压裂设计中应考虑的重要因素之一。为了更全面地表征页岩的可压性,探索适用性更好的页岩脆性指数预测方法,以四川盆地涪陵焦石坝地区奥陶系五峰组—志留系龙马溪组页岩为例,在对当前常用的脆性预测方法进行对比分析的基础上,结合该区页岩地质特点及工程地质力学特征,建立了矿物脆性指数与弹性参数(杨氏模量、泊松比、拉梅系数×密度、剪切模量×密度)之间的多元回归计算模型,形成了基于4个参数计算模型的叠前脆性预测技术。利用叠前弹性参数反演可以完成脆性指数数据体的预测,进而实现页岩层段纵向上优质压裂层与平面上甜点压裂区的综合评价。通过已知井检验,该方法预测的脆性指数与矿物脆性指数相关性好,并与工程压裂时的破裂压力具有良好的一致性,说明该方法具有较高的可信度和现场实用性,具有较高的推广价值。

关键词: 页岩气, 矿物组分, 脆性指数, 多元计算模型, 五峰组&mdash, 龙马溪组, 焦石坝地区

Abstract:

The brittleness index of shale is an important factor that should be considered seriously when designing volume fracturing scenario of horizontal well.In order to fully characterize the fracability of shale and search for a better method to predict the brittleness index of shale,taking shale of Wufeng Formation of Ordovicain and Longmaxi Formation of Silurian as examples,a multivariate regression model for calculating shale rock brittleness index is proposed in this paper after comparing different methods of depicting rock brittleness.The multivariate model is built up by analyzing the relationship between brittleness index of minerals and rock geomechanical parameters (Young’s modulus,Poission's ratio,the product of Lamé’s coefficient and density,the product of shear modulus and density).Combined with pre-stack seismic inversion technique,the brittleness index volume can be got to evaluate shale fracability vertically and horizontally.The predicted brittleness index coincides well with the fracturing pressure during engineering reservoir stimulation,which gives a strong evidence for the validation and application value of the new brittleness index calculation method.

Key words: Shale gas, Mineral ingredients, Brittleness index, Multivariate calculation model, Wufeng-Longmaxi Formations, Jiaoshiba area

中图分类号: 

  • TE122

[1]Guo Xusheng,Guo Tonglou,Wei Zhihong,et al.Thoughts on shale gas exploration in southern China[J].Engineering Sciences,2012,14(6):101-105,112.[郭旭升,郭彤楼,魏志红,等.中国南方页岩气勘探评价的几点思考[J].中国工程科学,2012,14(6):101-105,112.]
[2]Guo Xusheng.Rules of two-factor enrichment for marine shale gas in southern China[J].Acta Geologica Sinica,2014,8(7):1209-1218.[郭旭升.南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探及实践认识[J].地质学报,2014,8(7):1209-1218.]
[3]Guo Xusheng.Enrichment Mechanism and Exploration Technology at Jiaoshiba Area,Fuligng Shale Gasfield[M].Beijing:Science Press,2014.[郭旭升.涪陵页岩气田焦石坝区块富集机理与勘探技术[M].北京:科学出版社,2014.]
[4]Guo Xusheng,Hu Dongfeng,Wen Zhidong,et al.Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery:A case study of the Wufeng-Longmaxi Formation of Jiaoshiba area[J].Geology in China,2014,41(3):893-901.[郭旭升,胡东风,文治东,等.四川盆地及周缘下古生界海相页岩气富集高产主控因素——以焦石坝地区五峰组—龙马溪组为例[J].中国地质,2014,41(3):893-901.]
[5]Guo Tonglou,Zhang Hanrong.Formation and enrichment mode of Jiaoshiba shale gasfield,Sichuan Basin[J].Petroleum Exploration and Development,2014,41(1):28-37.[郭彤楼,张汉荣.四川盆地焦石坝页岩气田形成与富集高产模式[J].石油勘探与开发,2014,41(1):28-37.]
[6]Guo Tonglou,Liu Ruobing.Implications from marine shale gas exploration breakthrough in complicated structural area at high thermal stage:Taking Longmaxi Formation in Well JY1 as an example[J].Natural Gas Geoscience,2013,24(4):643-651.[郭彤楼,刘若冰.复杂构造区高演化程度海相页岩气勘探突破的启示——以四川盆地东部盆缘JY1井为例[J].天然气地球科学,2013,24(4):643-651.]
[7]Zhao Jinzhou,Wang Song,Li Yongming.Difficulties and key techniques in the fracturing treatment of shale gas reservoirs[J].Natural Gas Industry,2012,32(4):46-49.[赵金洲,王松,李勇明.页岩气藏压裂改造难点与技术关键[J].天然气工业,2012,32(4):46-49.]
[8]Buller D,Hughes S,Market J,et al.Petrophysical evalution for enhancing hydraulic stimulation in horizontal shale gaswells[C]//SPE Annual Technical Conference and Exhibition.Florence,Italy:Society of Petroleum Engineers.SPE 132990,2010.[JP]
[9]Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale gas systems:the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assesment[J].AAPG Bulletin,2007,91(4):475-499.
[10]Maende A,Jarrie D.Finding by passed or overlooked pay zones using geochemistry techniques[C]//International Petroleum Technology Conference.Kuala Lumpur,Malaysia:Europear Association of Geoscientists & Engineers,2008.
[11]Li Qinghui,Chen Mian,Jin Yan,et al.Indoor evaluation method for shale brittleness and improvement[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(8):1680-1685.[李庆辉,陈勉,金衍,等.页岩脆性的室内评价方法及改进[J].岩石力学与工程学报,2012,31(8):1680-1685.][JP]
[12]Heteny M.Handbook of Experimental Stress Analysis[M].New York:John Wiley,1966:23-25.
[13]Lawn B R,Marshall D B.Hardness,toughness and brittleness:an indentation analysis[J].Journal of American Ceramic Society,1979,62(7):347-350.
[14]Jesse V H.Glossary of Geology and Related Sciences[M].Washington:American Geological Institute,1960:99-102.
[15]Quinn J B,Quinn G D.Indentation brittleness of ceramics:a fresh approach[J].Journal of Materials Science,1997,32(16):4331-4346.
[16]Bishop A W.Progressive failure with special reference to the mechanism causing it[C]//Proceedings of the Geotechnical Conference,Olso:[s.n.],1967:142-150.
[17]Griggs D,Handin J.Rock Deformation:A Symposium[M].New York:Waverly Press,1960:66-67.
[18]Grigg M.Emphasis on mineralogy and basin stress for gas shale exploration[C]//SPE Meeting on gas shale Technology Exchange,2004.
[19]Rickman R,Mullen M,Petre E et al.A practical use of shale petrophysics for stimulation design optimization:All shale Plays are not clones of the Barnett shale[C]//SPE Annual Technical Conference and Exhibition.Colorado,USA:Society of Petroleum Engineers,2008.
[20]Li Qinghui,Chen Mian,Jin Yan,et al.Rock mechanical and brittleness evaluation of shale gas reservoir[J].Petroleum Drilling Techniques,2012,40(4):18-22.[李庆辉,陈勉,金衍,等.页岩气储层岩石力学特性及脆性评价[J].石油钻探技术,2012,40(4):18-22.]
[21]Hu Dongfeng,Zhang Hanrong,Ni Kai,et al.Main controlling factors for gas preservation conditions of marine shales insoutheastern margins of the Sichuan Basin[J].Natural Gas Industry,2014,34(6):1-7.[胡东风,张汉荣,倪楷,等.四川盆地东南缘海相页岩气保存条件及其主控因素[J].天然气工业,2014,34(6):1-7.]
[22]Goodway B.Isotropic AVO methods to detect fracture prone zones in tight gas resource plays[C]//CSEG CSPG Convention.Canada:Canadian Society Exploration Geophysicists Canda’s Energy Geoscientists,2007.
[23]Goodway B,Perez M,Varsek J.et al.Seismic petro-physics and isotropic-anisotropic AVO methods for unconventional gas exploration[J].The leading Edge,2010,29(12):1500-1508.[JP]
[24]Perez M,Close D.Developing Templates for Integrating Quantitative Geophysics and Hydraulic Fracture Completions Data:Part I-Principles and Theory[C]//SEG Annual Meeting.San Antonio,USA:Society of Exploration Geophysicists,2011.[JP]
[25]Close D,Perez M,Goodway B,et al.Integrated workflows for shale gas and case study results for the horn river basin,British Columbia,Canada[J].The Leading Edge,Special Section:Seismic Inversion for Reservoir Properties,2012:556-569.[JP]
[26]Guo Tonglou.The fuling shale gasfield:A highly productive Silurian gas shale with high thermal maturity and complex evolution history,southeastern Sichuan Basin,China[J].Interpretation,3(2):1-10.
[27]Guo Tonglou.Evaluation of highly thermally mature shale-gas reservoirs in complex structural parts of the Sichuan Basin[J].Journal of Earth Science,2013,24(6):863-873.
[28]Guo Tonglou,Zeng Ping.The structural and preservation conditions for shale gas enrichment and high productivity in the Wufeng-Longmaxi Formation,Southeastern Sichuan Basin[J].Energy Exploration & Exploitation,2015,33(3):259-276.[JP]
[29]Yang Jian,Fu Yongqiang,Chen Hongfei,et al.Rock mechanical characteristics of shale reservoirs[J].Natural Gas Industry,2012,32(7):12-14.[杨建,付永强,陈鸿飞,等.页岩储层的岩石力学特征[J].天然气工业,2012,32(7):12-14.]
[30]Tang Ying,Xing Yun,Li Lezhong,et al.Influenc factors and evaluation methods of the shale gas fracability[J].Earth Science Frontiers,2012,19(5):356-363.[唐颖,刑云,李乐忠,等.页岩储层可压裂性影响因素及评价方法[J].地学前缘,2012,19(5):356-363.]
[31]Zhao Haifeng,Chen Mian,Jin Yan,et al.Rock fracture kinetics of the fracture mesh system in shale gas reservoirs[J].Petroleum Exploration and Development,2012,39(4):464-470.[赵海峰,陈勉,金衍.页岩气藏网状裂缝系统的演示断裂动力学[J].石油勘探与开发,2012,39(4):464-470.]
[32]Zhou Dehua,Jiao Fangzheng,Jia Changgui,et al.Large-scale multi-stage hydraulic fracturing technology for shale gas horizontal well JY1HF[J].Petroleum Drilling Techniques,2014,42(1):75-80.[周德华,焦方正,贾长贵,等.JY1HF页岩气水平井大型分段压裂技术[J].石油钻探技术,2014,42(1):75-80.]

[1] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[2] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[3] 王朋飞,姜振学,吕鹏,金璨,李鑫,黄璞. 重庆周缘下志留统龙马溪组和下寒武统牛蹄塘组页岩有机质孔隙发育及演化特征[J]. 天然气地球科学, 2018, 29(7): 997-1008.
[4] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[5] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[6] 朱维耀, 马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[7] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[8] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[9] 王涛利,郝爱胜,陈清,李,王庆涛,卢鸿,刘大永. 中扬子宜昌地区五峰组和龙马溪组页岩发育主控因素[J]. 天然气地球科学, 2018, 29(5): 616-631.
[10] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[11] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[12] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[13] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[14] 王宏坤,吕修祥,王玉满,慕瑄,张琰,钱文文,陈佩佩. 鄂西下志留统龙马溪组页岩储集特征[J]. 天然气地球科学, 2018, 29(3): 415-423.
[15] 卢文涛,李继庆,郑爱维,梁榜,张谦,杨文新. 涪陵页岩气田定产生产分段压裂水平井井底流压预测方法[J]. 天然气地球科学, 2018, 29(3): 437-442.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 聂采军,赵军,夏宏权, 刘之的. 地层破裂压力测井预测的统计模式研究[J]. 天然气地球科学, 2004, 15(6): 633 -636 .
[2] 杨满平,李允. 考虑储层初始有效应力的岩石应力敏感性分析[J]. 天然气地球科学, 2004, 15(6): 601 -603 .
[3] 李广之, 胡斌 邓天龙 袁子艳 . 微量元素V和Ni的油气地质意义[J]. 天然气地球科学, 2008, 19(1): 13 -17 .
[4] 谢兴礼;朱玉新;冀光;夏静;. 气藏产能评价方法及其应用[J]. 天然气地球科学, 2004, 15(3): 276 -279 .
[5] 胥洪俊;范明国;康征;常志强;张绍俊 . 考虑渗透率应力敏感的低渗气藏产能预测公式[J]. 天然气地球科学, 2008, 19(1): 145 -147 .
[6] 张 乐,姜在兴,郭振廷. 构造应力与油气成藏关系[J]. 天然气地球科学, 2007, 18(1): 32 -36 .
[7] 相建民;. 塔里木油田水平井优化设计方法及跟踪效果评价[J]. 天然气地球科学, 2006, 17(4): 435 -438 .
[8] 王天祥;朱忠谦;李汝勇;陈朝晖;吴震;. 大型整装异常高压气田开发初期开采技术研究――以克拉2气田为例[J]. 天然气地球科学, 2006, 17(4): 439 -444 .
[9] 朱华银;陈建军;李江涛;胡勇;. 疏松砂岩气藏出砂机理研究[J]. 天然气地球科学, 2006, 17(3): 296 -299 .
[10] 王善聪;赵 玉;李江涛;梅 洪;胡昌德 . 三层分采及分层测压技术在涩北气田的应用研究[J]. 天然气地球科学, 2007, 18(2): 307 -311 .