天然气地球科学

• 天然气开发 • 上一篇    下一篇

致密砂岩气藏缝网系统渗流力学和岩石断裂动力学

赵海峰,蒋迪,石俊   

  1. (1.中国石油大学(北京),北京  102249;2.中核集团中国核电工程有限公司,北京  100840)
  • 收稿日期:2015-03-07 修回日期:2015-04-16 出版日期:2016-02-10 发布日期:2016-02-10
  • 作者简介:赵海峰(1980),男,安徽舒城人,副教授,博士,主要从事石油工程岩石力学研究. Email:zhaohf@cup.edu.cn.
  • 基金资助:

    国家科技重大专项课题(编号:2016ZX05009004);中国石油大学(北京)基金(编号:ZX20150191)联合资助.

Fluid mechanics and rock fracture kinetics of fracture mesh system in tight sand gas reservoirs

Zhao Haifeng,Jiang Di,Shi Jun   

  1. (1.School of Petroleum Engineering,China University of Petroleum,Beijing 102249,China;
    2.China Nuclear Power Engineering Co.Ltd.,Beijing 100840,China)
  • Received:2015-03-07 Revised:2015-04-16 Online:2016-02-10 Published:2016-02-10

摘要:

基于渗流力学方程和伽辽金法建立水平井体积压裂缝网渗流场的有限元模型,研究了不同缝网形式与规模下产能随缝网导流能力的变化关系,研究发现致密砂岩与页岩不同,压裂的缝网规模并非越大越好,而应该维持在中小规模(0.1≤FCI≤0.25),且需要高导流能力的支撑主缝。在确定了裂缝形态的基础上,计算得到产能与SRV曲线,研究发现存在SRV临界值(优化值),若SRV超出临界值,产能增幅明显变小。在压裂实践中可由SRV临界值和FCI值,确定水平井分段压裂簇间距和簇数之间的关系。研究了形成中小规模缝网对应的施工条件,首先由岩石断裂动力学给出压裂液排量、黏度、岩石动态断裂韧性、弹性模量、地应力、天然裂缝参数与缝内净压力之间的解析关系,再由缝网前沿动态扩展条件给出形成中小缝网所需排量(优化排量)。

关键词: 致密砂岩气, 体积压裂, 缝网规模, 断裂动力学, 优化排量

Abstract:

Based on fluid mechanics equations and the Galerkin method,a finite element model has been established to simulate fracture mesh seepage field of horizontal wells volume fracturing,and the relationship between fracture mesh conductivity and production has been studied under different fracture mesh scale.Unlike shale gas,fracture mesh scale is not the bigger the better for tight sand stone gas.It should be maintained in a smalltomedium scale (0.1≤FCI≤0.25) and a high conductivity main fracture is also required.From production SRV curve,it is found that there exists a critical SRV value (optimal value),and the production increase is significantly smaller when SRV is beyond the critical value.In practice,together with SRV,the critical SRVconditions to form smalltomedium scale fracture mesh.An analytic relationship among fracturing fluid pump rate,viscosity,rock dynamic fracture toughness,elastic modulus,Poisson’s ratio,stress,natural fracture parameters and fracture net pressure is given by rock fracture kinetics,and then the optimized pump rate to form smalltomedium scale fracture mesh is determined by dynamic extension conditions on the fracture mesh edge.

Key words: Tight sand gas, Volume fracturing, Fracture mesh scale, Fracture kinetics, Optimized pump rate

中图分类号: 

  • TE311

[1]Maxwell S C,Urbancic T I,Steinsberger N,et al.Microseismic imaging of hydraulic fracture complexity in the Barnett Shale[C]//SPE Annual Technical Conference and Exhibition.Society of Petroleum Engineers,2002.
[2]Fisher M K,Davidson B M,Goodwin A K,et al.Integrating fracture mapping technologies to optimize stimulations in the Barnett Shale[C]//SPE Annual Technical Conference and Exhibition.Society of Petroleum Engineers,2002.
[3]Mayerhofer M J,Lolon E P,Youngblood J E,et al.Integration of microseismicfracturemapping results with numerical fracture network production modeling in the Barnett Shale[C]//SPE Annual Technical Conference and Exhibition.Society of Petroleum Engineers,2006.
[4]Mayerhofer M J,Lolon E,Warpinski N R,et al.What is stimulated reservoir volume?[J].SPE Production & Operations,2010,25(1):8998.
[5]Olson J E,Taleghani A D.Modeling simultaneous growth of multiple hydraulic fractures and their interaction with natural fractures[C]//SPE Hydraulic Fracturing Technology Conference.Society of Petroleum Engineers,2009.
[6]Rahman M M,Aghighi M A,Rahman S S,et al.Interaction between induced hydraulic fracture and preexisting natural fracture in a poroelastic environment:Effect of pore pressure change and the orientation of natural fractures[C]//Asia Pacific Oil and Gas Conference & Exhibition.Society of  Petroleum Engineers,2009.
[7][KG*4/5]Weng Dingwei,Zhang Qihan,Lu Yongjun,et al.Study and application on improving hydraulic fracture complexity in sandstone reservoir[J].Natural Gas Geosciences,2014,25(7):10851089.[翁定为,张启汉,卢拥军,等.提高砂岩储层人工裂缝复杂度的压裂技术及应用[J].天然气地球科学,2014,25(7):10851089.
[8]Wu Qi,Xu Yun,Wang Tengfei,et al.Major changes in stimulation ideavolume stimulation technology[J].Natural Gas Industry,2011,31(4):712.[吴奇,胥云,王腾飞,等.增产改造理念的重大变革——体积改造技术概论[J].天然气工业,2011,31(4):712.]
[9]Wu Qi,Xu Yun,Wang Xiaoquan,et al.Unconventional reservoir volume stimulationconnotation and realization,optimization design[J].Petroleum Exploration and Development,2012,03(3):352358.[吴奇,胥云,王晓泉,等.非常规油气藏体积改造技术——内涵、优化设计与实现[J].石油勘探与开发,2012,3(3):352358.]
[10]Guo J,Yu T,Gou B.New design method of multistage hydraulic fracturing in shale horizontal well[C]//Offshore Technology ConferenceAsia.Offshore Technology Conference,2014.
[11]Mu Hailin,Liu Xinghao,Liu Jianghao,et al.Application of volume fracturing to reconstruction of tight sandstone reservoir[J].Natural Gas Exploration & Development,2014,37(2):5660.[穆海林,刘兴浩,刘江浩,等.非常规储层体积压裂技术在致密砂岩储层改造中的应用[J].天然气勘探与开发,2014,37(2):5660.]
[12]Zhang Yingxin,Sun Hao.Feasibility study of coal seam gas pressure simulation based on ANSYS temperature field[J].Journal of Heilongjiang Institute of  Science & Technology,2013,23(4):333336.[张迎新,孙浩.基于ANSYS温度场的煤层瓦斯压力模拟可行性[J].黑龙江科技学院学报,2013,23(4):333336.]
[13]Zhao Haifeng,Chen Mian,Jin Yan.Experiment and finite element model for optimizing pressure difference of hydraulic fracture well test[J].Petroleum Exploration  and  Development,2009,36(2):247253.[赵海峰,陈勉,金衍.压裂井试油压差优化的实验与有限元模型[J].石油勘探与开发,2009,36(2):247253.]
[14]Zhao Haifeng,Chen Mian,Jin Yan,et al.Rock fracture dynamics on mechanism of hydraulic fracturing for shale gas reservoir[J].Petroleum Exploration  and  Development,2012,39(4):465470.[赵海峰,陈勉,金衍,等.页岩气藏网状裂缝系统的岩石断裂动力学[J].石油勘探与开发,2012,39(4):465470.][JP]
[15]Jiang Tingxue,Jia Changgui,Wang Haitao,et al.Study on shale gas network stimulation design method[J].Petroleum Drilling Techniques,2011,39(3):3640.[蒋廷学,贾长贵,王海涛,等.页岩气网络压裂设计方法研究[J].石油钻探技术,2011,39(3):3640.]
[16]Zhao Jinzhou,Yang Hai,Li Yongming,et al.Stability of the natural fracture when the hydraulic fracture is approaching[J].Natural Gas Geosciences,2014,25(3):402408.[赵金洲,杨海,李勇明,等.水力裂缝逼近时天然裂缝稳定性分析[J].天然气地球科学,2014,25(3):402408.]

[1] 朱立文,王震亮,张洪辉. 鄂尔多斯盆地乌审召地区山2亚段致密气“甜点”控因分析[J]. 天然气地球科学, 2018, 29(8): 1085-1093.
[2] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[3] 葛岩,朱光辉,万欢,潘新志,黄志龙. 鄂尔多斯盆地东缘紫金山侵入构造对上古生界致密砂岩气藏形成和分布的影响[J]. 天然气地球科学, 2018, 29(4): 491-499.
[4] 赵力彬,张同辉,杨学君,郭小波,饶华文. 塔里木盆地库车坳陷克深区块深层致密砂岩气藏气水分布特征与成因机理[J]. 天然气地球科学, 2018, 29(4): 500-509.
[5] 黄禹忠,刁素,栗铁峰,何红梅. 致密砂岩气藏压裂伤害及对策——以川西坳陷ZH构造JS12气藏为例[J]. 天然气地球科学, 2018, 29(4): 579-585.
[6] 何文军,杨海波,费李莹,王学勇,杨彤远,杨翼波,鲍海娟. 准噶尔盆地新光地区佳木河组致密砂岩气有利区资源潜力综合分析[J]. 天然气地球科学, 2018, 29(3): 370-381.
[7] 高文杰,李贤庆,张光武,魏强,张吉振,祁帅,陈金明. 塔里木盆地库车坳陷克拉苏构造带深层致密砂岩气藏储层致密化与成藏关系[J]. 天然气地球科学, 2018, 29(2): 226-235.
[8] 贾锁刚, 梁宏波, 万有余, 胥云, 翁定为, 刘世铎. 柴达木盆地英西地区缝洞型碳酸盐岩储层体积改造技术研究与应用[J]. 天然气地球科学, 2018, 29(11): 1619-1626.
[9] 印森林, 程乐利, 刘子雄, 陈玲, 陈恭洋, 冯伟, 罗迎春. 基于测录井曲线的致密砂岩储层产能评价方法[J]. 天然气地球科学, 2018, 29(11): 1627-1638.
[10] 王颖, 邓守伟, 范晶, 邹晓品, 杨静. 松辽盆地南部重点断陷天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1455-1464.
[11] 张吉,侯科锋,李浮萍,田敏,张志刚. 基于储层地质知识库约束的致密砂岩气藏储量评价——以鄂尔多斯盆地苏里格气田苏14区块为例[J]. 天然气地球科学, 2017, 28(9): 1322-1329.
[12] 李耀华,宋岩,姜振学,王朋岩,赵荣,刘顺宇,阴丽诗. 全球致密砂岩气盆地参数统计分析[J]. 天然气地球科学, 2017, 28(6): 952-964.
[13] 王烽. 鄂尔多斯盆地东部神木区块二叠系山西组致密砂岩气低产主控因素分析[J]. 天然气地球科学, 2017, 28(5): 687-695.
[14] 王妍妍,王卫红,胡小虎,刘华,郭艳东. 诱导渗透率场中压裂水平井压力动态分析模型[J]. 天然气地球科学, 2017, 28(5): 785-791.
[15] 黄禹忠,刁素,尹琅,栗铁峰,刘琦. 致密砂岩气藏水平井细分段适应性分析[J]. 天然气地球科学, 2017, 28(3): 460-465.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 聂采军,赵军,夏宏权, 刘之的. 地层破裂压力测井预测的统计模式研究[J]. 天然气地球科学, 2004, 15(6): 633 -636 .
[2] 杨满平,李允. 考虑储层初始有效应力的岩石应力敏感性分析[J]. 天然气地球科学, 2004, 15(6): 601 -603 .
[3] 谢兴礼;朱玉新;冀光;夏静;. 气藏产能评价方法及其应用[J]. 天然气地球科学, 2004, 15(3): 276 -279 .
[4] 胥洪俊;范明国;康征;常志强;张绍俊 . 考虑渗透率应力敏感的低渗气藏产能预测公式[J]. 天然气地球科学, 2008, 19(1): 145 -147 .
[5] 张 乐,姜在兴,郭振廷. 构造应力与油气成藏关系[J]. 天然气地球科学, 2007, 18(1): 32 -36 .
[6] 相建民;. 塔里木油田水平井优化设计方法及跟踪效果评价[J]. 天然气地球科学, 2006, 17(4): 435 -438 .
[7] 王天祥;朱忠谦;李汝勇;陈朝晖;吴震;. 大型整装异常高压气田开发初期开采技术研究――以克拉2气田为例[J]. 天然气地球科学, 2006, 17(4): 439 -444 .
[8] 朱华银;陈建军;李江涛;胡勇;. 疏松砂岩气藏出砂机理研究[J]. 天然气地球科学, 2006, 17(3): 296 -299 .
[9] 王善聪;赵 玉;李江涛;梅 洪;胡昌德 . 三层分采及分层测压技术在涩北气田的应用研究[J]. 天然气地球科学, 2007, 18(2): 307 -311 .
[10] 刘吉余;马志欣;孙淑艳 . 致密含气砂岩研究现状及发展展望[J]. 天然气地球科学, 2008, 19(3): 316 -319 .