天然气地球科学

• 非常规天然气 • 上一篇    

煤、油页岩和页岩微观孔隙差异及其储集机理

曹涛涛,宋之光,罗厚勇,刘光祥   

  1. 1.南京大学地球科学与工程学院,江苏 南京 210093;
    2.中国石化石油勘探开发研究院无锡石油地质研究所,江苏 无锡 214126;
    3.中国科学院广州地球化学研究所,广东 广州 510640
  • 收稿日期:2015-03-23 修回日期:2015-05-27 出版日期:2015-11-10 发布日期:2015-11-10
  • 作者简介:曹涛涛(1987-),男,河南商丘人,工程师,博士,主要从事页岩储集物性及含气性研究. E-mail:515165359@163.com.
  • 基金资助:

    国家重点基础研究发展计划(编号:2012CB214704);国家油气重大专项(编号:2011ZX05008-002-20);国家基金面上项目(编号:41273058)联合资助.

The Differences of Microscopic Pore Structure Characteristics of Coal,Oil shale and Shales and Their Storage Mechanisms

CAO Tao-tao,SONG Zhi-guang,LUO Hou-yong,LIU Guang-xiang   

  1. 1.School of Earth Science and Engineering,Nanjing University,Nanjing 210093,China;
    2.Wuxi Research Institute of Petroleum Geology,SINOPEC,Wuxi 214126,China;
    3.Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China
  • Received:2015-03-23 Revised:2015-05-27 Online:2015-11-10 Published:2015-11-10

摘要:

运用氮气吸附、压汞、扫描电镜和甲烷吸附实验研究煤、油页岩和页岩的孔隙结构特征、分析了煤、油页岩和页岩的储集机理。结果表明:①煤、油页岩和页岩的孔隙大小及分布特征有显著的差异,与成熟度、黏土矿物孔隙和有机质流体产生的矿物溶蚀孔等有关;②低成熟干酪根微观孔隙不发育,含有少量微孔和相对多的中孔;高过成熟干酪根发育有大量的微孔及少量中孔,其比表面积和孔体积远高于低成熟干酪根,是页岩比表面积和孔体积的重要贡献者;③煤、油页岩和页岩甲烷吸附容量与其比表面积大小不匹配,具有较低比表面积的煤其甲烷吸附容量最高,煤的这种超量赋存可能是以“填充”甚至是以“固溶态”方式存在;油页岩的甲烷吸附容量中可能包含一定量的沥青溶解气;高过成熟页岩甲烷吸附容量明显高于低成熟页岩甲烷吸附容量。

关键词: 微观孔隙结构, 甲烷吸附容量, 储集机理, 成熟度, 油页岩, 页岩,

Abstract:

Nitrogen adsorption,mercury intrusion,scanning electron microscope and methane sorption experiments were analyzed for coals,oil shale and shales to study their pore structure characteristics and storage mechanisms.The results are as follows.(1)There are great differences in pore size scale and pore size distribution among coals,oil shale and shales,which are the result of maturity,clay mineral content,and dissolution effect caused by organic fluid;(2)The microscopic pores in low mature kerogen are not developed with few total pores,exhibiting a minor number of micropores and relatively more mesopores as well,while the mature kerogen has much higher specific surface area and pore volume than the low-mature kerogen and is an important contributor to pore space in shales;(3)The methane sorption capacities don′t match the specific surface areas for coals,oil shale and shales,indicating that coal sample with lower specific surface has the highest methane sorption capacity,called “overbalance sorption”,which may be caused by the molecular aggregation way of “molecular filling” or even “solid solution”.The methane sorption capacity of oil shale may contain a certain amount of dissolved gas in bitumen and oil;high to over-mature organic-rich shales have significant higher methane sorption capacity compared to low-mature shales.

Key words: Microscopic pore structure characteristics, Methane sorption capacity, Storage mechanism, Maturity, Oil shale, Shale, Coal

中图分类号: 

  • TE122.2

[1]Montgomery S L,Jarvie D M,Bowker K A,et al.Mississippian Barnett Shale,Fort Worth Basin,northcentral  Texas:Gas-shale play with multitrillion cubic foot potential[J].AAPG Bullutin,2005,89:155-175.
[2]Su Xianbo,Lin Xiaoying,Zhao Mengjun,et al.Prediction on coal adsorption capacity under reservoir conditions[J].Natural Gas Industry,2006,26(8):34-36.[苏现波,林晓英,赵孟军,等.储层条件下煤吸附甲烷能力预测[J].天然气工业,2006,26(8):34-36.]
[3]Zhang Liping,Su Xianbo,Zeng Rongshu.Discussion on the controlling effects of coal properties on coal adsorption capacity[J].Acta Geological Sinica,2006,80(6):910-915.[张丽萍,苏现波,曾荣树.煤体性质对煤吸附容量的控制作用探讨[J].地质学报,2006,80(6):910-915.]
[4]Zhao Jin,Zhang Suian,Cao Lihu.Comparison of experimental adsorption between shale gas and coalbed gas[J].Natural Gas Geoscience,2013,24(1):176-181.[赵金,张遂安,曹立虎.页岩气与煤层气吸附特征对比实验研究[J].天然气地球科学,2013,24(1):176-181.]
[5]Liu Zhaojun,Liu Rong.Oil shale resource state and evaluating system[J].Earth Science Froniters: China University of Geosciences,Beijing;Peking University,2005,12(3):315-324.[刘招君,柳蓉.中国油页岩特征及开采利用前景分析[J].地学前缘:中国地质大学(北京);北京大学,2005,12(3):315-324.]
[6]Wang Pingli,Li Zengxue,Lv Dawei,et al.Analysis on palaeoclimate and metallogenic materials of typical basins co-occurring cirumstances of coal and oil shale[J].Coal Geology of China,2013,25(12):8-11.[王平丽,李增学,吕大炜,等.典型盆地煤与油页岩工程成矿物质及古气候分析[J].中国煤炭地质,2013,25(12):8-11.]
[7]Huang Jizhong.Exploration prospect of shale gas and coal-bed methane in Sichuan Basin[J].Lithologic Reservoirs,2009,21(2):116-120.[黄籍中.四川盆地页岩气与煤层气勘探前景分析[J].岩性油气藏,2009,21(2):116-120.]
[8]Jiang Wenli,Zhao Suping,Zhang Jinchuan,et al.Comparison of controlled factors for coalbed methane and shale gas accumulation[J].Natural Gas Geosience,2010,21(6):1057-1060.[姜文利,赵素平,张金川,等.煤层气与页岩气聚集主控因素对比[J].天然气地球科学,2010,21(6):1057-1060.]
[9]Brunauer S,Emmet P H,Teller E.Adsorption of gases in multimolecular layers[J].Journal of American Chemical Society,1938,60:309-319.
[10]Barrett E P,Johner L S,Halenda P P.The determination of pore volume and area distributions in porous substances I.Computations from nitrogen isotherms[J].Journal of American Chemical Society,1951,73:373-380.
[11]Washburn.Note on the method of determining the distribution of pore sizes in a porous material[J].Proceedings of the National  Academy of Sciences,1921,7(4):115-116.
[12]Wang S B,Song Z G,Cao T T,et al.The methane sorption capacity of Paleozoic shales from the Sichuan Basin,China[J].Marine and Petroleum Geology,2013,44:112-119.
[13]Wang Sibo,Song Zhiguang,Cao Taotao.The Understanding of Methane Isotherm Adsorption Experiments on Shale Organic Matter and the Corresponding Kerogen[C].The 14 National Conference of Organic Geochemistry,Zhuhai,Guangdong,2013:585-586.[王思波,宋之光,曹涛涛.页岩有机质和干酪根对甲烷等温吸附实验的认识[C].第十四届全国有机地球化学会议,珠海,广东,2013:585-586.]
[14]Kuila U,Prasad M,Derkowski A,et al.Compositional controls on mudrock pore-size distribution:an example from Nibrara formation[C].SPE 160141,SPE Annual Technical Conference and Exhibition,San Antonio,Texas,2012,October 8-10.
[15]Cao T T,Song Z G,Wang S B,et al.Characterizing the pore structure in the Silurian and Permian shales of the Sichuan Basin,China[J].Marine and Petroleum Geology,2015,61:140-150.
[16]Sing K S.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J].Pure and Applied Chemistry,1985,57(11):603-619.
[17]Groen J C,Peffer L A A,Perez-Ramirez J.Pore size determination in modified micro-and mesoporous materials.Pitfalls and limitations in gas desorption data analysis[J].Microporous and Mesoporous Materials,2003,60:1-17.
[18]Wang Jilin,Liu Guijian,Wang Weizhong,et al.Characteristics of pore-fissure and permeability of shales in the Longmaxi Formation in southeastern Sichuan Basin[J].Journal of China Coal Society,2013,38(5):772-777.[汪吉林,刘桂建,王维忠,等.川东南龙马溪组页岩孔裂隙及渗透性特征[J].煤炭学报,2013,38(5):772-777.]
[19]Hu Guangqing,Jiang Bo,Wu Hu.Pore characteristics of Coal and its impact on adsorption in Zhongliangshan Mining area[J].Coal Geology of China,2011,23(5):8-12.[胡广青,姜波,吴胡.中梁山矿区煤的孔隙特征及其对吸附性的影响[J].中国煤炭地质,2011,23(5):8-12.]
[20]Chen Guochang,Xian Xiaohong,Zhang Daijun,et al.The volume filling theory of the adsorption of methane on anthracite and its char[J].Journal of Chongqing University:Natural Science Edition,1998,21(2):75-81.[陈国昌,鲜晓红,张代钧,等.微孔填充理论研究无烟煤和炭对甲烷的吸附特性[J].重庆大学学报:自然科学版,1998,21(2):75-81.]
[21]An F H,Cheng Y P,Wu D M,et al.The effect of small micropores on methane adsorption of coals from Northern China[J].Adsorption,2013,19(1):83-90.
[22]Wu Qiang,Li Chenglin,Jiang Chuanli.Discussion on the control factors of forming gas hydrate[J].Journal of China Society,2005,30(3):283-287.[吴强,李成林,江传力.瓦斯水合物生成控制因素探讨[J].煤炭学报,2005,30(3):283-287.]
[23]Li Xiangchun,He Xueqiu,Nie Baisheng.The possibility of gas hydrate existence in coal seams[J].Natural Gas Industry,2008,28(3):130-132.[李祥春,何学秋,聂百胜.甲烷水合物在煤层中存在的可能性[J].天然气工业,2008,28(3):130-132.]
[24]Mastalerz M,Schimmelmann A,Drobniak A,et al.Porosity of Devonian and Mississippian New Albany shale across a maturation gradient:Insights from organic petrology,gas adsorption,and mercury intrusion[J].AAPG Bullutin,2013,97(10):1621-1643.
[25]Gasparik M,Bertier P,Gensterblum Y,et al.Geological controls on the methane stroage capacity in organic-rich shales[J].International Journal of Coal Geology,2014,123(3):34-51.
[26]Curtis M E,Cardott B J,Sondergeld C H,et al.Development of organic porosity in the Woodford Shale with increasing thermal maturity[J].International Journal of Coal Geology,2012,103(23):26-31.
[27]Loucks R G,Reed R M,Ruppel S C,et al.Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J].International Journal of Sediment Reserarch,2009,79(11/12):848-861.
[28]Wu Lin′gang,Li Xiusheng,Guo Xiaobo,et al.Diagenetic evolution and formation mechanism of dissolved pore of shale oil reservoirs of Lucaogou Formation in Malang Sag[J].Journal of China university of Petroleum:Science and Technology,2012,36(3):38-44.[吴林钢,李秀生,郭小波,等.马朗凹陷芦草沟组页岩油储层成岩演化与溶蚀孔隙形成机制[J].中国石油大学学报:自然科学版,2012,36(3):38-44.]
[29]Huang Zhenkai,Chen Jianping,Xue Haitao,et al.Microstructural characteristics of the Cretaceous Qingshankou Formation shale,Songliao Basin[J].Petroleum Exploration and Development,2013,40(1):58-63.[黄振凯,陈建平,薛海涛,等.松辽盆地白垩系青山口组泥页岩孔隙结构特征[J].石油勘探与开发,2013,40(1):58-63.]
[30]Bustin R M,Clarkson C R.Geological controls on coalbed methane reservoir capacity and gas content[J].International Journal of Coal Geology,1998,38(1/2):3-26.
[31]Uchida T,Ebinuma T,Ishizaki T.Dissociation conditionmeasurements of methane hydrate in confined small pores of porous glass[J].The Journal of Physical Chemistry B,1999,103(18):3659-3662.
[32]Yu Hongguan,Song Jiyong,Li Yanxi,et al.Discussion on the possibilities of methane hydrate existence in coal bed[J].Natural Gas Industry,2006,26(8):41-43.[于洪观,宋吉勇,李延席,等.煤层中甲烷水合物存在可能性探讨[J].天然气工业,2006,26(8):41-43.]
[33]Alexeev A,Vasylenko T,Ulyanova E.Phase states of methane in fossil coals[J].Solid State Communications,2004,130(10):669-673.
[34]Alexeev A,Ulyanova E,Starikov G,et al.Latent methane in fossile coals[J].Fuel,2004,83(10):1407-1411
[35]Ross D J K,Bustin R M.Shale gas potential of the Lower Jurassic Gordondale Member,northeastern British Columbia,Canada[J].Bulletin of Canadian Petroleum Geology,2007,55(1):51-75.
[36]Ross D J K,Bustin R M.Lower Cretaceous gas shales in northeastern British Columbia,Part II:evaluation of regional potential gas resources[J].Bulletin of Canadian Petroleum Geology,2008,56(1):22-61.
[37]Lu X C,Li F C,Watson A T.Adsorption measurements in Devonian shales[J].Fuel,1995,74(4):599-603
[38]Ji L M,Zhang T W,Milliken K L,et al.Experimental investigation of main controls on methane adsorption in clay-rich rocks[J].Applied Geochemistry,2012,27(12):2533-2545.
[39]Zhang Xuefen,Lu Xiancai,Zhang Linye,et al.Occurrences of shale gas and their petroleum geological signifience[J].Advances in Earth Science,2010,25(6):597-604.[张雪芬,陆现彩,张林晔,等.页岩气的赋存形式研究及其石油地质意义[J].地球科学进展,2010,25(6):597-604.]
[40]Ross D J K,Bustin R M.Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs[J].Fuel,2007,86(17/18):2696-2706
[41]Yang Feng,Ning Zhengfu,Kong Detao,et al.Pore structures of shales from high pressure mercury injection and nitrogen adsorption method[J].Natural Gas Geoscience,2013,24(3):450-455.[杨峰,宁正福,孔德涛,等.高压压汞法和氮气吸附法分析页岩孔隙结构[J].天然气地球科学,2013,24(3):450-455.]

[1] 周立宏,蒲秀刚,肖敦清,李洪香,官全胜,林伶,曲宁. 渤海湾盆地沧东凹陷孔二段页岩油形成条件及富集主控因素[J]. 天然气地球科学, 2018, 29(9): 1323-1332.
[2] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[3] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[4] 秦胜飞,李金珊,李伟,周国晓,李永新. 川中地区须家河组水溶气形成及脱气成藏有利地质条件分析[J]. 天然气地球科学, 2018, 29(8): 1151-1162.
[5] 程鸣,傅雪海,张苗,程维平,渠丽珍. 沁水盆地古县区块煤系“三气”储层覆压孔渗实验对比研究[J]. 天然气地球科学, 2018, 29(8): 1163-1171.
[6] 吴丛丛,杨兆彪,孙晗森,张争光,李庚,彭辉. 云南恩洪向斜西南区垂向流体能量特征及有序开发建议[J]. 天然气地球科学, 2018, 29(8): 1205-1214.
[7] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[8] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[9] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[10] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[11] 王香增,张丽霞,姜呈馥,尹锦涛,高潮,孙建博,尹娜,薛莲花. 鄂尔多斯盆地差异抬升对长7页岩孔隙的影响——以东南部甘泉地区和南部渭北隆起地区为例[J]. 天然气地球科学, 2018, 29(5): 597-605.
[12] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[13] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[14] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[15] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!