天然气地球科学

• 天然气开发 • 上一篇    下一篇

致密气藏气水相对渗透率理论及实验分析

莫邵元,何顺利,雷刚,刘广峰,盖少华   

  1. 中国石油大学石油工程教育部重点实验室,北京 102249
  • 收稿日期:2015-03-13 修回日期:2015-09-27 出版日期:2015-11-10 发布日期:2015-11-10
  • 作者简介:莫邵元(1985-),男,广西南宁人,博士研究生,主要从事油气田渗流理论及数值模拟研究. E-mail:stanley_msy@163.com.
  • 基金资助:

    国家科技重大专项“大型油气田及煤层气开发”(编号:2011ZX05013-006)资助.

Theoretical and Experimental Analysis of Gas-Water Relative Permeability in Tight Gas

MO Shao-yuan,HE Shun-li,LEI Gang,LIU Guang-feng,GAI Shao-hua   

  1. MOE Key Laborary of Petroleum Engineering,China University of Petroleum,Beijing 102249,China
  • Received:2015-03-13 Revised:2015-09-27 Online:2015-11-10 Published:2015-11-10

摘要:

通过设计不同压差下的气水驱替实验,得到了不同驱替压差下的气,水两相驱替特征及相对渗透率曲线。并基于分形理论,考虑了束缚水饱和度及驱替压差的影响,建立了致密砂岩气水相对渗透率计算模型,求解得到了气水相对渗透率的解析公式。模型计算得到的相对渗透率与实验结果吻合度较高,从而验证了模型的正确性。研究表明,气,水相对渗透率曲线受到驱替压差和孔隙结构参数的影响。随着驱替压差增大,束缚水饱和度降低,两相区域变宽,水相相对渗透率升高。

关键词: 分形理论, 致密气藏, 束缚水饱和度, 驱替压差, 气水相对渗透率

Abstract:

The effect of drawdown pressure on relative permeability is theoretically and experimentally investigated in this paper.A novel predictive model for gas-water relative permeability on the basis of the fractal theory was derived and the corresponding gas flooding tests were conducted.The predictions of relative permeability by the proposed model were validated by comparing with the conducted experiments.Both theoretical and experimental results indicate the significant effect of driving pressure on relative permeability.The predicted and experimental results demonstrate that lower immobile water saturation,wider two-phase region and higher water relative permeability corresponds to the higher drawdown pressure.

Key words: Fractal theory, Tight gas, Immobile water saturation, Drawdown pressure, Gas-water relative permeability

中图分类号: 

  • TE348

[1]Liu Yuzhan,Pan Yi,Zheng Xiaomin,et al.Influence of rock stress sensitivity in tight gas reservoir on characteristics of gas/water two phase flows[J].Complex Hydrocarbon Reservoirs,2013,6(3):36-39.[刘宇展,潘毅,郑小敏,等.致密气藏岩石应力敏感对气水两相渗流特征的影响[J].复杂油气藏,2013,6(3):36-39.]
[2]Fan J J,Zhou H M,Liu S B,et al.Gas-water Two Phases Flow Characterization and Its Influencing Factors in Low Permeability Tight Sandstone[C].Unconventional Resources Technology Conference (URTEC),2013.
[3]Chowdiah P.Laboratory measurements relevant to two-phase flow in a tight gas sand matrix[C]//SPE Annual Technical Conference and Exhibition.Society of Petroleum Engineers,1987.
[4]Ward J S,Morrow N R.Capillary pressures and gas relative permeabilities of low-permeability sandstone[J].SPE Formation Evaluation,1987,2(3):345-356.
[5]Ngo N D,Tamma K K.Microscale permeability predictions of porous fibrous media[J].International Journal of Heat and Mass Transfer,2001,44(16):3135-3145.
[6]Pandey R B,Becklehimer J L,Gettrust J F.Density profile and flow of driven gas in an open porous medium with a computer simulation[J].Physica A:Statistical Mechanics and its Applications,2001,289(3):321-335.
[7]Bin Gong,Xuan Liu,Yu J P.FromMolecular Dynamics to Lattice Boltzmann:A New Approach for Pore Scale Modeling of Multi-Phase Flow[C]//International Petroleum Technology Conference,2013.[HJ]
[8]Yu Boming.Advances of fractal analysis of transport properties for porous media[J].Advances in Mechanics,2003,33(3):333-346.[郁伯铭.多孔介质输运性质的分形分析研究进展[J].力学进展,2003,33(3):333-346.]
[9]Xu P,Qiu S X,Yu B M,et al.Prediction of relative permeability in unsaturated porous media with a fractal approach[J].International Journal of Heat and Mass Transfer,2013,64(3):829-837.
[10]Liu Y,Yu B M,Xiao B.A fractal model for relative permeability of unsaturated porous media with capillary pressure effect[J],Fractals,2007,15(3):217-222.
[11]Gao Shusheng,Ye Liyou,Xiong Wei,et al.Seepage mechanism and strategy for development of large and low permeability and tight sandstone gas reservoirs with water content[J].Journal of Oil and Gas Technology,2013,35(7):93-99.[高树生,叶礼友,熊伟,等.大型低渗致密含水气藏渗流机理及开发对策[J].石油天然气学报,2013,35(7):93-99.]
[12]Guo Ping,Huang Weigang,Jiang Yiwei,et al.Research on the irreducible and movable water of tight sandstone gas reservoir[J].Natural Gas Industry,2006,26(10):99-101.[郭平,黄伟岗,姜贻伟,等.致密气藏束缚与可动水研究[J].天然气工业,2006,26(10):99-101.]
[13]He Chengzu,Hua Mingqi.The thickness of water-film in oil and gas reservoirs[J].Petroleum Exploration and Development,1998,25(2):75-77.[贺承祖,华明琪.油气藏中水膜的厚度[J].石油勘探与开发,1998,25(2):75-77.]
[14]Gao Dapeng,Sun Jing,Han Xiaohong,et al.Assessment of the movable water in heterogeneous gas reservoir and new thoughts of enhancing gas recovery[J].Natural Gas Geoscience,2014,25(9):1437-1443.[高大鹏,孙敬,韩晓红,等.非均质气藏可动水评价及提高采收率新思路[J].天然气地球科学,2014,25(9):1437-1443.]
[15]Li Qi,Gao Shusheng,Yang Zhaopeng,et al.Influence of the threshold pressure gradient on tight sandstone gas reservoir recovery[J].Natural Gas Geoscience,2014,25(9):1442-1450.[李奇,高树生,杨朝蓬,等.致密砂岩气藏阈压梯度对采收率的影响[J].天然气地球科学,2014,25(9):1442-1450.]
[16]Hu Yong,Shao Yang,Lu Yongliang,et al.Experimental study on occurrence models of water in pores and the influencing to the development of tight gas reservoir[J].Natural Gas Geoscience,2011,22(1):176-181.[胡勇,邵阳,陆永亮,等.低渗气藏储层孔隙中水的赋存模式及对气藏开发的影响[J].天然气地球科学,2011,22(1):176-181.]
[17]Tian X,Cheng L,Yan Y,et al.An improved solution to estimate relative permeability in tight oil reservoirs[J].Journal of Petroleum Exploration and Production Technology,2015,5:305-314.

[1] 朱宽亮,吴晓红,康毅力,游利军,田键,宋静晗. 致密火山岩气藏水相和油相圈闭损害实验评价——以南堡凹陷5号构造沙河街组为例[J]. 天然气地球科学, 2018, 29(7): 1042-1050.
[2] 吴明涛,王晓冬,姚天福. 致密气藏气井非稳态线性渗流特征分析新方法[J]. 天然气地球科学, 2018, 29(7): 1060-1066.
[3] 吕志凯,贾爱林,唐海发,刘群明,王泽龙. 大型致密砂岩气藏水平井产能评价与新认识[J]. 天然气地球科学, 2018, 29(6): 873-879.
[4] 严谨,何佑伟,史云清,郑荣臣,程时清,于海洋,李鼎一. 致密气藏水平井压裂缝不均匀产气试井分析[J]. 天然气地球科学, 2017, 28(6): 839-845.
[5] 何岩峰,成景烨,窦祥骥,王相,唐波. 页岩天然裂缝网络渗透率模型研究[J]. 天然气地球科学, 2017, 28(2): 280-286.
[6] 田冷,李鸿范,马继翔,谢全,顾岱鸿,任效星. 基于启动压力梯度与应力敏感的致密气藏多层多级渗流模型[J]. 天然气地球科学, 2017, 28(12): 1898-1907.
[7] 丁景辰. 高含水致密气藏水平井稳产原因分析及启示——以鄂尔多斯盆地大牛地气田为例[J]. 天然气地球科学, 2017, 28(1): 127-134.
[8] 位云生,贾爱林,何东博,王军磊. 致密气藏多级压裂水平井产能预测新方法[J]. 天然气地球科学, 2016, 27(6): 1101-1109.
[9] 张冲,张超谟,张占松,秦瑞宝,余杰. 致密气储层岩心束缚水饱和度实验对比[J]. 天然气地球科学, 2016, 27(2): 352-358.
[10] 欧阳伟平,张冕,刘曰武,万义钊,袁冬蕊,李杉杉. 基于三参数非线性渗流的致密气藏数值试井分析[J]. 天然气地球科学, 2016, 27(11): 2030-2036.
[11] 李波,贾爱林,何东博,李学营. 低渗致密气藏压裂水平井产能预测新方法[J]. 天然气地球科学, 2015, 26(9): 1793-1802.
[12] 王欣,齐梅,李武广,胡永乐,刘佳,赵凯. 基于分形理论的页岩储层微观孔隙结构评价[J]. 天然气地球科学, 2015, 26(4): 754-759.
[13] 高大鹏,孙敬,韩晓红,郑金定,黄敏. 非均质气藏可动水评价及提高采收率新思路[J]. 天然气地球科学, 2014, 25(9): 1437-1443.
[14] 景成,蒲春生,周游,任杨,孙威,张志营. 基于成岩储集相测井响应特征定量评价致密气藏相对优质储层——以SULG东区致密气藏盒8上段成岩储集相为例[J]. 天然气地球科学, 2014, 25(5): 657-664.
[15] 陈科贵,温易娜,何太洪,孙万明,王超,吴韬,付建国. 低孔低渗致密砂岩气藏束缚水饱和度模型建立及应用——以苏里格气田某区块山西组致密砂岩储层为例[J]. 天然气地球科学, 2014, 25(2): 273-277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!