天然气地球科学

• 非常规天然气 • 上一篇    下一篇

镜煤有机溶剂二级抽提孔隙结构及吸附性差异

陈润,秦勇,韦重韬   

  1. 1.江苏省煤基CO2捕集与地质储存重点实验室(中国矿业大学),江苏 徐州 221008;2.煤层气资源与成藏过程教育部重点实验室(中国矿业大学),江苏 徐州 221008
  • 收稿日期:2013-07-02 修回日期:2013-11-05 出版日期:2014-07-10 发布日期:2014-07-10
  • 作者简介:陈润(1979-),男,江苏宿迁人,博士后,助理研究员,主要从事煤层气地质与CO2地质封存研究.
  • 基金资助:

    国家自然科学基金项目(编号:40730422;41202117);煤层气资源与成藏过程教育部重点实验室开放基金项目(编号:2013-006);中央高校基本科研业务费专项基金项目(编号:2014QNA17);江苏省煤基CO2捕集与地质储存重点实验室开放基金项目(编号:2011KF03)联合资助.

Differences in Pore Structures and Adsorptivity between Rawand Two-step-solvent-extracted Vitrains

CHEN Run, QIN Yong, WEI Chong-tao   

  1. 1.Key Laboratory Coal-based CO2Capture and Geological Storage, Jiangsu Province(CUMT), Xuzhou 221008, China;  2.Key Laboratory of Coalbed Methane Resource and Reservoir Formation History, Ministry of Education(CUMT), Xuzhou 221008, China
  • Received:2013-07-02 Revised:2013-11-05 Online:2014-07-10 Published:2014-07-10

摘要:

基于黔西—滇东5套镜煤及其有机溶剂二级抽余物的压汞和等温吸附实验结果,对比分析了原煤及其有机溶剂抽余物孔隙结构、吸附性差异及其影响因素。结果表明,抽提作用改变了镜煤孔隙结构,二硫化碳一级抽提煤岩孔结构改造受煤级控制,在煤级第二次跃变之前表现为增孔效应,之后表现为扩孔效应;苯二级抽提总体表现为扩孔效应。抽提作用同样改变了镜煤吸附性,改变方向和幅度取决于煤化程度的高低,在第二次煤化作用跃变之前,有机溶剂抽提作用增强了煤岩吸附性;在第二次煤化作用跃变之后,抽提作用减弱了煤岩吸附性。发现镜煤抽余物的吸附能力变化率与其微孔表面积变化率和孔容变化率存在较好的正相关关系;与总孔、大孔、中孔和过渡孔孔容变化率总体成负相关关系,与其表面积变化率总体也成负相关关系。认为第二次煤化作用跃变对镜煤抽余物孔隙结构和吸附性改变起关键作用;同时佐证了煤岩吸附气体主要通过微孔表面实现。研究还注意到,有机溶剂的抽提作用对煤孔隙结构乃至吸附性的改造可能与煤岩微观层次的大分子结构相关,其机理有待进一步探讨。

关键词: 镜煤, 有机溶剂, 逐级抽提, 孔隙结构, 吸附性

Abstract:

Based upon the data of mercury intrusion and methane isothermal adsorption of 5 sets of raw and two-step-extracted coals from western Guizhou and eastern Yunnan,the differences and influence factors of pore structure and adsorptivity between raw and solvent-extracted coals were comparatively discussed.The results show that the extraction changes vitrain pore structure.Coal rank controls the pore structure changes of carbon disulfide extracted coal,the extraction increases and enlarges the pore number and volume before and after the second coalification jump,respectively.The benzene extraction enlarges vitrain pore volume in all.The extraction also changes vitrain adsorptivity,but the change direction and magnitude depends on the coalification degree;the extraction of organic solvent enhances and reduces vitrain adsorptivity before and after the second coalification jump,respectively.It was found that the adsorptivity of extracted vitrain change has a positive relationship with the changes of the pore special surface area and/or volume,and it has a negative relationship to that of the total,macro,middle and transitional pore volume and special surface.It was considered that the second coalification jump plays a key role on the changes of the pore structure and the adsorptivity,and it evidenced that the methane adsorption happened in the surface area of coal micro pore.In addition,it was also suggested that the alteration of the organic extraction to the pore structure and adsorptivity of coal may involve the micro pore related to the macro-molecular structure of coal,which is worthy of further investigation.

Key words: Vitrain, Organic solvent, Stepwise-extraction, Pore structure, Adsorptivity

中图分类号: 

  • TE122.2

[1]Sun Maoyuan,Huang Shengchu.A Handbook of Coalbed Methane[JP] Development and Utilization[M].Beijing:China Coal Industry Publishing House,1998.[孙茂远,黄盛初.煤层气开发利用手册[M].北京:煤炭工业出版社,1998.]
[2]Ye Jianping,Shi Baosheng,Zhang Chuncai.Coal reservoir permeability and its controlled factors in China[J].Journal of China Coal Society,1999,24(2):118-122.[叶建平,史保生,张春才.中国煤储层渗透性及其主要影响因素[J].煤炭学报,1999,24(2):118-122.]
[3]Chalmers G R L,Bustin R M.On the effects of petrographic composition on coalbed methane sorption[J].International Journal of Coal Geology,2007,69:288-304.
[4]Sakurovs R,Day S,Weir S.Relationships between the critical properties of gases and their high pressure sorption behavior on coals[J].Energy & Fuels,2010,24:1781-1787.
[5]Melnichenko Y B,He L,Sakurovs R,et al.Accessibility of pores in coal to methane and carbon dioxide[J].Fuel,2012,91:200-208.
[6]Zhang Xiaodong,Liu Yanhao,Zhang Zixu,et al.Coal reservoir properties and coalbed gas controlling factors of Jiaozuo Coalfield[J].Natural Gas Geoscience,2009,20(3):446-453.[张小东,刘炎昊,张子戌,等.焦作煤田煤储层物性特征及控气因素[J].天然气地球科学,2009,20(3):446-453.]
[7]Zhong Lingwen.Adsorptive capacity of coals and its affecting factors[J].Earth Science:Journal of China University of Geosciences,2004,2929(3):327-332,368.[钟玲文.煤的吸附性能及影响因素[J].地球科学:中国地质大学学报,2004,29(3):327-332,368.]
[8]Bustin R M,Clarkson C R.Geological controls on coalbed methane reservoir capacity and gas content[J].International Journal of Coal Geology,1998,38(1/2):3-26.
[9]Clarkson C R,Bustin R M.Effect of pore structure and gas pressure upon the transport properties of coal:A laboratory and modeling study.1:Isotherms and pore volume distributions[J].Fuel,1999,78(11):1333-1344.
[10]Clarkson C R,Bustin R M.Effect of pore structure and gas pressure upon the transport properties of coal:A laboratory and modeling study.2:Adsorption rate modeling[J].Fuel,1999,78(11):1345-1362.
[11]Wang Xianghao,Wang Yanbin,Gao Shasha,et al.Differences in pore structures and absorptivity between tectonically deformed and undeformed coals[J].Geological Journal of China Universities,2012,18(3):528-532.[王向浩,王延斌,高莎莎,等.构造煤与原生结构煤的孔隙结构及吸附性差异[J].高校地质学报,2012,18(3):528-532.]
[12]Hodot B B.Outburst of Coal and Coalbed Gas[M].Song Shizhao,Wang Youan,translation.Beijing:China Industry Press,1966:1-318.[霍多特.煤与瓦斯突出[M].宋世钊,王佑安,译.北京:中国工业出版社,1966:1-318.]
[13]Tang Shuheng,Zhang Jingping,Wu Minjie.The pore structure characteristic about the sapropelic coal[J].Natural Gas Geoscience,2013,24(2):247-251.[唐书恒,张静平,吴敏杰.腐泥煤孔隙结构特征研究[J].天然气地球科学,2013,24(2):247-251.]
[14]Zhang Jun,Xu Yiqian,Han Chunli,et al.Effects of macerals and other factors on char porosity[J].Journal of Fuel Chemistry and Technology,2000,28(6):513-516.[张军,徐益谦,汉春利,等.显微组分及其它因素对煤焦孔隙结构的影响[J].燃料化学学报,2000,28(6):513-516.]
[15]Qin Yong,Zeng Yong.Reservoir Evaluation of Coalbed Methane and Its Production Technology[M].Xuzhou:China University of Mining and Technology Press,1996.[秦勇,曾勇.煤层甲烷储层评价及生产技术[M].徐州:中国矿业大学出版社,1996.]

[1] 张世铭,王建功,张小军,张婷静,曹志强,杨麟科. 酒西盆地间泉子段储层流体赋存及渗流特征[J]. 天然气地球科学, 2018, 29(8): 1111-1119.
[2] 刘喜杰,马遵敬,韩冬,王海燕,马立涛,葛东升. 鄂尔多斯盆地东缘临兴区块致密砂岩优质储层形成的主控因素[J]. 天然气地球科学, 2018, 29(4): 481-490.
[3] 王小垚,曾联波,周三栋,史今雄,田鹤. 低阶煤储层微观孔隙结构的分形模型评价[J]. 天然气地球科学, 2018, 29(2): 277-288.
[4] 姜黎明,余春昊,齐宝权,朱涵斌,王勇军. 孔洞型碳酸盐岩储层饱和度建模新方法及应用[J]. 天然气地球科学, 2017, 28(8): 1250-1256.
[5] 刘忠宝,冯动军,高波,李洪文,聂海宽. 上扬子地区下寒武统高演化页岩微观孔隙特征[J]. 天然气地球科学, 2017, 28(7): 1096-1107.
[6] 马东民,李沛,张辉,李卫波,杨甫. 长焰煤中镜煤与暗煤吸附/解吸特征对比[J]. 天然气地球科学, 2017, 28(6): 852-862.
[7] 陈术源,秦勇. 河北省北部页岩样品纳米级孔隙结构及其影响因素[J]. 天然气地球科学, 2017, 28(6): 873-881.
[8] 张大智. 利用氮气吸附实验分析致密砂岩储层微观孔隙结构特征——以松辽盆地徐家围子断陷沙河子组为例[J]. 天然气地球科学, 2017, 28(6): 898-908.
[9] 黄玉龙,刘春生,张晶晶,高有峰. 松辽盆地白垩系火山岩气藏有效储层特征及成因[J]. 天然气地球科学, 2017, 28(3): 420-428.
[10] 康毅力,陈益滨,李相臣,游利军,陈明君. 页岩粒径对甲烷吸附性能影响[J]. 天然气地球科学, 2017, 28(2): 272-279.
[11] 马明,陈国俊,李超,张功成,晏英凯,赵钊,沈怀磊. 珠江口盆地白云凹陷恩平组储层成岩作用与孔隙演化定量表征[J]. 天然气地球科学, 2017, 28(10): 1515-1526.
[12] 李凤丽,姜波,宋昱,汤政. 低中煤阶构造煤的纳米级孔隙分形特征及瓦斯地质意义[J]. 天然气地球科学, 2017, 28(1): 173-182.
[13] 黄金亮,董大忠,李建忠,胡俊文,王玉满. 陆相页岩储层孔隙分形特征——以四川盆地三叠系须家河组为例[J]. 天然气地球科学, 2016, 27(9): 1611-1618.
[14] 刘晓鹏,刘燕,陈娟萍,胡爱平. 鄂尔多斯盆地盒8段致密砂岩气藏微观孔隙结构及渗流特征[J]. 天然气地球科学, 2016, 27(7): 1225-1234.
[15] 李超正,柳广弟,曹喆,牛子铖,牛小兵,王朋,张梦媛,张凯迪. 鄂尔多斯盆地陇东地区长7段致密砂岩微孔隙特征[J]. 天然气地球科学, 2016, 27(7): 1235-1247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!