天然气地球科学 ›› 2008, Vol. 19 ›› Issue (06): 748–753.doi: 10.11764/j.issn.1672-1926.2008.06.748

• 天然气地球化学 • 上一篇    下一篇

塔里木盆地煤及其显微组分超高温开放体系热模拟实验气态产物对比研究

刘全有1;Bernhard M Krooss2;金之钧1;王毅1;Jan Hollenstein2;Ralf Littke2; 刘文汇1   

  1. (1. 中国石化石油勘探开发研究院,北京 100083;2. Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Aachen D52056,Germany)
  • 收稿日期:2008-09-11 修回日期:2008-11-10 出版日期:2008-12-10 发布日期:2008-12-10

Comparison of the Gas Compound Generation of Tarim Coal and Its Maceralsin Open System Non-Isothermal Pyrolysis with Ultra-high Temperature

LIU Quan-you1;Bernhard M Krooss 2;JIN Zhi-jun1;WANG Yi1; Jan Hollenstein 2,Ralf Littke2; LIU Wen-hui1   

  1. (1. Exploration and Production Research Institute, SINOPEC, Beijing 100083, China; 2. Lehrstuhl für Geologie, Geochemie und Lagerstten des Erd ls und der Kohle, RWTH Aachen, Aachen D52056, Germany)
  • Received:2008-09-11 Revised:2008-11-10 Online:2008-12-10 Published:2008-12-10

摘要:

通过对塔里木盆地煤及其显微组分进行以1 K/min升温速率的开放体系热模拟实验(最高实验温度为1 200℃),获得了煤岩与各显微组分气态产物产率与累计产量变化。对比分析了煤及其显微组分生成气态产物CH4、N2和CO变化特征,其中 N2生成温度高于CH4和CO; H2生成时间与CH4相一致(说明了氢为烃类气体形成的关键因素)。煤及其显微组分生烃潜力具有壳质组>镜质组>煤>半丝质组≥ 丝质组的特征,说明煤岩生烃潜力主要由其显微组分控制;虽然壳质组在煤岩中含量很低,但生烃潜力高于其他显微组分。煤岩生成的N2具有双峰型特征,说明了前后峰N2具有不同来源,前者来源于无机矿物(如含铵粘土)的分解,后者来源于有机质热降解;显微组分生成N2主要为高温阶段,说明了显微组分在分离过程中可能造成部分无机矿物的损失。

关键词: 塔里木盆地, 煤岩及显微组分, 超高温热模拟实验, 气态产物

Abstract:

Open system nonisothermal pyrolysis at a heating rate of 1K/min, in which Tmax was 1200℃, was performed on immature coal (RO=0.4%) from the Tarim basin, and isolated macerals (vitrinite, exinite, fusinite and semifusinite), and the gas generation rate and cumulative gas production of the coal and its macerals were gotten. The gas compounds (i.e. CH4, N2, CO, etc) from the Tarim coal and its macerals in the pyrolysis were contrastively described, where the temperature of N2 generation was higher than that of CH4 and CO, and the temperature of H2 formation was consistent with the CH4, suggesting hydrogen would be an indispensable agent for hydrocarbon gases. The sequence of hydrocarbon generation potential from coal and its macerals occurs as follows: exinite>vitrinite>coal>semifusinite≥fusinite. This result indicates the hydrocarbon generation potential of coal would be controlled by its macerals. Although the exinite content in coal is the lowest than other macerals it had the greatest potential of hydrocarbon generation. The distinct two peak generation of nitrogen from coal indicated two potential sources, the former from inorganic matter, such as ammonium clays, and the latter mainly from organic matter. N2 generation from the macerals occurs at the high temperatures due to the partial loss of inorganic matter during the maceral isolation.

Key words: Tarim basin, Coal and maceral, Ultra-high temperature pyrolysis, Gas compounds.

中图分类号: 

  • TE122.1+13

[1]Krooss B M,Littke R,Muller B,et al.Generation of nitrogen and methane from sedimentary organic matter: Implications on the dynamics of natural gas accumulations[J].Chemical Geology,1995,126(3/4):291-318.
[2]Sackett W M.Carbon isotope exchange between methane and amorphous carbon at 700℃[J].Organic Geochemistry,1993,20: 43-45.
[3]Sackett W M.Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments[J].Geochimica et Cosmochimica Acta,1978,42(6):571-580.
[4]Tannenbaum E,Kaplan I R.Role of minerals in the thermal alterations of organic matter,I.Generation of gases and condensates under dry condition[J].Geochimica et Cosmochimica Acta,1985,49(12):2589-2604.
[5]Lewan M.Laboratory simulation of petroleum formation: Hydrous pyrolysis[M]//Engel M H,Macko S A.Organic Geochemistry-Principle and Applications.New York:Plenum Press,1993:419-422.
[6]Andresen B,Throndsen T,Raheim A,et al.A comparison of pyrolysis products with models for natural gas generation[J].Chemical Geology,1995,126(3/4):261-280.[7]Monthioux M,landais P,Monin J C.Comparison between natural and artificial maturation series of humic coals from the Mahakam Delta[J].Indonesian Journal of Organic Geochemistry,1985,8: 275-292.
[8]Klein J,Juntgen H.Studies of the emission of elemental nitrogen from coals of different rank and its release under geochemical conditions[M]//Advances in Organic Geochemistry 1971.Oxford:Pergamon Press,1972:647-656.
[9]Krooss B,Leythaeuser D,Lillack H.Nitrogen-rich natural gases:Qualitative and quantitative aspects of natural gas accumulation in reservoirs[J].Erdl und Kohle-Erdgas-Petrochemie vereinigt mit Brennstoff-Chemie,1993,46(7/8): 271-276.
[10]Reynolds J G,Crawford R W,Burnham A L.Analysis of oil shale and petroleum source rock pyrolysis by triple quadrupole mass spectrometry: Comparisons of gas evolution at the heating rate of 10℃/min[J].Energy & Fuels,1991,5(3):507-523.
[11]Boudou J P,Espitalie J.Molecular nitrogen from coal pyrolysis: Kinetic modelling[J].Chemical Geology,1995,126: 319-333.
[12]Van Heek K H,Jüntgen H.Bestimmung der reaktionskinetischen Parameter aus nichtisothermen Messungen[J].Ber.Bunsenges.Phys.Chem.,1968,72: 223-1231.
[13]Galimov E M.Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks[J].Chemical Geology,1988,71(1-3):77-95.
[14]Rooney M A,Claypool G E,Chung H M.Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons[J].Chemical Geology,1995,126(3-4):219-232.
[15]Behar F,Gillaizeau B,Derenne S,et al.Nitrogen distribution in the pyrolysis products of a type II kerogen(Cenomanian,Italy),timing of molecular nitrogen production versus other gases[J].Energy & Fuels,2000,14: 431-440.
[16]Schenk H J,Dieckmann V.Prediction of petroleum formation: the influence of laboratory heating rates on kinetic parameters and geological extrapolations[J].Marine and Petroleum Geology,2004,21(1):79-95.
[17]Schenk H J,Horsfield B.Kinetics of petroleum generation by programmed-temperature closed-versus open-system pyrolysis[J].Geochimica et Cosmochimica Acta,1993,57(3):623-630.
[18]Krooss M B,Friberg L,Gensterblum Y,et al.Investigation of the pyrolytic liberation on molecular nitrogen from Palaeozoic sedimentary rocks[J].International Journal of Earth Sciences,2005,94(5/6):1023-1038 .
[19]康玉柱.中国主要构造体系与油气分布[M].新疆: 新疆科技卫生出版社,1999.
[20]戴金星,钟宁宁,刘德汉.中国煤成大中型气田地质基础与主控因素 [M].北京: 石油工业出版社,2000.
[21]梁狄刚,张水昌,陈建平,等.库车坳陷油气藏地球化学 [M].北京: 石油工业出版社,2002.
[22]Liang D,Zhang S,Zhao M,et al.Hydrocarbon sources and stages of reservoir formation in Kuqa depression,Tarim Basin[J].Chinese Science Bulletin,2000,47(Special Issue):56-63.
[23]Jia C,Gu J,Zhang G.Geological constraints of giant and medium-sized gas fields in Kuqa Depression[J].Chinese Science Bulletin,2002,47(Special Issue):47-54.
[24]秦胜飞,贾承造,李梅.和田河气田天然气东西部差异及成因[J].石油勘探与开发,2002,29(5):16-18.
[25]刘全有.塔里木盆地侏罗系煤岩成烃实验及其地球化学特征与评价[D].兰州:中国科学院兰州地质研究所,2003.
[26]Gaschnitz R,Krooss B M,Gerling P,et al.On-line pyrolysis-GC-IRMS: isotope fractionation of thermally generated from coals[J].Fuel,2001,80(15):2139-2153.[27]Schaefer R G,Galushkin Y I,Kolloff A,et al.Reaction kinetics of gas generation in selected source rocks of the West Siberian Basin: implications for the mass balance of early-thermogenic methane[J].Chemical Geology,1999,156: 41-65.
[28]Scholten S O.The Distribution of Nitrogen Isotopes in Sediments[D].Utrecht:University of Utrecht,1991.
[29]Everlien G.The Behavior of the Nitrogen Contained in Minerals During the Diagenesis and Metamorphism of Sediments[D].Braunschweig:Technical University of Braunschweig,1990.

[1] 张荣虎,王珂,王俊鹏,孙雄伟,李君,杨学君,周露. 塔里木盆地库车坳陷克深构造带克深8区块裂缝性低孔砂岩储层地质模型[J]. 天然气地球科学, 2018, 29(9): 1264-1273.
[2] 王清龙,林畅松,李浩,韩剑发,孙彦达,何海全. 塔里木盆地西北缘中下奥陶统碳酸盐岩沉积微相特征及演化[J]. 天然气地球科学, 2018, 29(9): 1274-1288.
[3] 周波,曹颖辉,齐井顺,黄世伟,刘策,贾进华,陈秀艳. 塔里木盆地古城地区下奥陶统储层发育机制[J]. 天然气地球科学, 2018, 29(6): 773-783.
[4] 朱光有,曹颖辉,闫磊,杨海军,孙崇浩,张志遥,李婷婷,陈永权. 塔里木盆地8 000m以深超深层海相油气勘探潜力与方向[J]. 天然气地球科学, 2018, 29(6): 755-772.
[5] 王珊,曹颖辉,杜德道,王石,李洪辉,董洪奎,严威,白莹. 塔里木盆地柯坪—巴楚地区肖尔布拉克组储层特征与主控因素[J]. 天然气地球科学, 2018, 29(6): 784-795.
[6] 曹颖辉,李洪辉,闫磊,王洪江,张君龙,杨敏,赵一民. 塔里木盆地满西地区寒武系台缘带分段演化特征及其对生储盖组合的影响[J]. 天然气地球科学, 2018, 29(6): 796-806.
[7] 闫磊,李洪辉,曹颖辉,杨敏,赵一民. 塔里木盆地满西地区寒武系台缘带演化及其分段特征[J]. 天然气地球科学, 2018, 29(6): 807-816.
[8] 杨敏,赵一民,闫磊,李洪辉,张欣欣,徐振平,罗浩渝. 塔里木盆地东秋里塔格构造带构造特征及其油气地质意义[J]. 天然气地球科学, 2018, 29(6): 826-833.
[9] 陈斐然,张义杰,朱光有,张宝收,卢玉红,张志遥. 塔里木盆地台盆区深层天然气地球化学特征及成藏演化[J]. 天然气地球科学, 2018, 29(6): 880-891.
[10] 黄少英, 杨文静, 卢玉红, 张科, 赵青, 凡闪. 塔里木盆地天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1497-1505.
[11] 陈燕燕,胡素云,李建忠,王铜山, 陶小晚. 原油裂解过程中组分演化模型及金刚烷类化合物的地球化学特征[J]. 天然气地球科学, 2018, 29(1): 114-121.
[12] 任宇泽,林畅松,高志勇,刘景彦,宋宁宁. 塔里木盆地西南坳陷白垩系层序地层与沉积充填演化[J]. 天然气地球科学, 2017, 28(9): 1298-1311.
[13] 张建勇,倪新峰,吴兴宁,李文正,郝毅,陈娅娜,吕学菊,谷明峰,田瀚,朱茂. 中国主要克拉通盆地深层白云岩优质储层发育主控因素及分布[J]. 天然气地球科学, 2017, 28(8): 1165-1175.
[14] 石书缘,刘伟,黄擎宇,王铜山,周慧,王坤,马奎. 塔里木盆地北部震旦系齐格布拉克组白云岩储层特征及成因[J]. 天然气地球科学, 2017, 28(8): 1226-1234.
[15] 余琪祥,余风华,史政. 塔里木盆地巴什托构造异常高压特征及成因[J]. 天然气地球科学, 2017, 28(7): 1000-1007.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!