天然气地球科学 ›› 2006, Vol. 17 ›› Issue (2): 239–244.doi: 10.11764/j.issn.1672-1926.2006.02.239

• 天然气水合物 • 上一篇    下一篇

冻结粗砂土中甲烷水合物形成CT试验研究

吴青柏;,蒲毅彬,蒋观利,邢莉莉   

  1. (中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室,甘肃 兰州 730000)
  • 收稿日期:2005-10-13 修回日期:2006-01-14 出版日期:2006-04-20 发布日期:2006-04-20
  • 通讯作者: 吴青柏qbwu@lzb.ac.cn. E-mail:qbwu@lzb.ac.cn.
  • 作者简介:吴青柏(1964-),男,江苏武进人,研究员,博士,主要从事冻土环境与工程、冻土区天然气水合物研究.
  • 基金资助:

    国家自然科学基金项目(编号:40471024);中国科学院寒区旱区环境与工程研究所创新项目联合资助.

EXPERIMENTAL RESEARCH OF FORMATION PROCESS OF METHANE HYDRATE  IN FREEZING COARSE-GRAIN SAND BY COMPUTERIZED TOMOGRAPHY

WU Qing-bai, PU Yi-bin, JIANG Guan-li, XING Li-li   

  1. (State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environm ental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou  730000, China)
  • Received:2005-10-13 Revised:2006-01-14 Online:2006-04-20 Published:2006-04-20

摘要:

冻土甲烷水合物形成的试验研究对于认识冻结多孔介质中形成、存在天然气水合物的机制和评价多年冻土区的气候变化、环境变化等有极为重要的意义,通过X-射线断层扫描系统对冻结粗砂土中甲烷水合物形成的试验表明:冻结砂土中甲烷水合物形成过程中CT数有所变化,且与甲烷气水合物形成、水分迁移和砂土密度增大均有关,而且通过不同时段CT图像的差值运算可以获得甲烷水合物形成的新信息;同时在甲烷水合物形成过程中具有明显的压力降低阶段,且伴随有相变热产生;尽管CT下砂土较大的吸收系数影响了对甲烷水合物形成的判断,但通过CT扫描定量信息,结合甲烷水合物形成过程中的压力和砂土温度变化,可以较为清楚地判断冻结砂土中甲烷水合物的形成。

关键词: 冻结粗砂土, 甲烷水合物, X-射线断层扫描系统

Abstract:

 The experimental research of formation process of methane hydrate in frozen  soil is very important to comprehend the formation and existing mechanisms of na tural gas hydrate in frozen porous media, and also very meaningful to estimate t he climate change and environment change in permafrost areas. The experimental r esearch of formation process of methane gas hydrate in frozen coarse-grain sand  by computerized tomography (CT) is expatiated on in this article. It was proved  in the experiment that CT could describe the formation process through the way  of CT-value which is closely related to the formation of methane hydrate, moist ure migration and density change. The formation of methane hydrate can be observ ed by computation of CT images in different time, and the pressure would decreas e evidently with the generating of phase transition heat in this process. The es timation of methane hydrate formed could be influenced by the absorption coeffic ient coarse-grain sand because of its high density, but the other information,  such as the changes of pressure and temperature, and CT image can be used to hel p to judge clearly the formation of methane hydrate in freezing coarse-grain sand.

Key words: Freezing coarse-grain sand, Methane hydrate, Computerized tomography.

中图分类号: 

  • TE122.1

[1 ]CLENNELL M B, HOVLAND M, BOOTH J S, et al. Formation of natural gas hydrates in marine sediments. Conceptual model o f gas hydrate growth conditioned by host sediment properties [J ]. Journal of Ge ophysics Research B, 1999,104(B10):22985-23003.  
[2]  宋岩,夏新宇.天然气水合物研究和勘探现状 [J ].天然气地球科学,2001, 12(1):3-10.
  [3 ]  张立新,徐学祖,马巍.青藏高原多年冻土与天然气水合物 [J ].天然气地球科学,2001,12(1):22-26.
  [4 ]  COLLETT T S. Permafrost-associated gas hydrate accumulations [C ]//Proceedings of the 1st International Conference on Natural Gas Hydrat es. Ann N Y Acad Sci,1993, 715:247-269.
 [5] YAKUSHEV V S, CHUVILIN E M. Natural gas and gas hydrate accum ulations within permafrost in Russia [J ]. Cold Regions Science and Technology,2 000,31:189-197.   
[6]  DALLIMORE S R, COLLETT T S. Gas hydrates associated with deep perma frost in the mackenzie delta, N W T, Canada: Regional Overview [C ]//Proceedings  of the 7th International Conference on Permafrost, Yellowknife, Canada, 2002:20 7-220.
 [7]  DALLIMORE S R, COLLETT T S. Intrapermafrost gas hydrates  from a deep core hole in the Mackenzie delta northwest, Territories [J  ]. Canada Geology, 1995, 23(6):527-530. 
 [8]  MAKOGON Y F. Hydrate of natural gas [M ]. Tulsa: Penn Well, 1981:  160.
 [9]  HANDA Y P, STUP D. Thermodynamic properties and dissociat ion characteristics of methane and propane hydrates in 70-ANG-radius silica ge l pores [J ]. The Journal of Physical Chemistry, 1992, 96: 8599-8603.
[10]  UCHIDA T, EBINUMA T, ISHIZAKI T. Dissociation condition measur ements of methane hydrate in confined small pores of porous glass [J ]. The Jour nal of Physical Chemistry B, 1999,103:3659-3662.
[11] ALADKO E Y, DYADIN Y A, FENELONOV V B, et al. Dissociation cond itions of ethane hydrate in mesoporous silica gels in wide ranges of pressure an d water content [J ]. The Journal of Physical Chemistry B, 2004, 108: 16540-16 547. 
[12]  SMITH D H, WILDER J W, SESHADRI J. Methane hydrate equilibria  in silica gels with broad pore-size distributions [J ]. A I ChE Journal, 2002,  48(2):393-400.
[13]  CHA S B, OUAR H, WILDEMAN T R, et al. A third surf ace effe ct on hyd rate formation [J ]. The Journal of Physical Chemistry, 1988,92(23):64923-64941 .
[14]  Permafrost and natural gas hydrates studies in Geocryology Department of  M. V. Lemonosov Moscow State University [EB/OL ].http://www.geol.msu.ru/deps/ cryology/sci --h --en.htm#permafrost#permafrost.
[15]  赵宏伟,刁少波,业渝光,等.多孔介质中水合物阻抗探测技术 [J ].海洋地质与 第四纪地质,2005,25(1):137-142.
[16]  FAN S, FENG Z, HAO Y M, et al. Effects of Salt on the formation of g as hydrate in porous media [C ]//Proceedings of 5th International Conference o n Gas hydrate. Trondheim, Norway:2005.
 [17 ]  樊栓狮,刘锋,陈多福.海洋天然气水合物的形成机理探讨 [J ].天然气地球科学 ,2004,15(5):524-530.
[18]  CHEN G, FAN S, HU Y, et al. Thermal conductivity of combination gas  hydrate and hydrate-sand mixtures [C ]//.Proceedings of 5th International Confe rence on Gas hydrate.Trondheim, Norway:2005.
[19]  蒲毅彬.CT用于冻土实验研究的方法介绍 [J ].冰川冻土,1993,15(1):196-198 .
[20]  蒲毅彬,邢莉莉,吴青柏,等.天然气水合物CT实验方法的初步研究 [J ].CT理论 与应用研究,2005,14(2):54-62.
[21]  蒋观利,吴青柏,蒲毅彬,等.甲烷水合物形成过程的CT识别原理和成 像特征 [J ].天然气地球科学,2005,16(6):814-817.

[1] 蒋观利,吴青柏,杨玉忠,展静. 砂土中不同产状甲烷水合物形成和分解过程研究[J]. 天然气地球科学, 2013, 24(6): 1305-1310.
[2] 张鹏,吴青柏,蒋观利,董兰凤. 不同颗粒介质内甲烷水合物形成反应特征[J]. 天然气地球科学, 2013, 24(2): 265-272.
[3] 展静, 吴青柏, 杨玉忠. 冰点以下甲烷水合物分解实验对天然气储运的影响[J]. 天然气地球科学, 2012, 23(2): 348-352.
[4] 王英梅, 吴青柏, 蒲毅彬, 展静. 温度梯度对粗砂中甲烷水合物形成和分解过程的影响及电阻率响应[J]. 天然气地球科学, 2012, 23(1): 19-25.
[5] 蒋观利,吴青柏,展静. 降温速率和粒径对砂土中甲烷水合物形成过程影响研究[J]. 天然气地球科学, 2011, 22(5): 920-925.
[6] 张鹏, 吴青柏, 蒋观利. 降温速率对零度以上介质内甲烷水合物形成的影响[J]. 天然气地球科学, 2009, 20(6): 1000-1004.
[7] 张鹏, 吴青柏, 王英梅. 粉土内甲烷水合物形成与分解过程中的水分特征[J]. 天然气地球科学, 2009, 20(4): 616-619,626.
[8] 王英梅 吴青柏 张鹏 展静 蒋观利. 冰点以下甲烷水合物等压分解实验研究[J]. 天然气地球科学, 2009, 20(2): 244-248.
[9] 展静, 吴青柏, 蒋观利. 冰颗粒粒径对冰点以下甲烷水合物自保护效应的影响[J]. 天然气地球科学, 2008, 19(4): 577-580.
[10] 雷怀彦, 官宝聪, 龚承林, 刘建辉, 黄磊.
海底甲烷水合物溶解和分解辨析及其地质意义
[J]. 天然气地球科学, 2007, 18(4): 584-587.
[11] 李娜,奚西峰,何小霞, 樊英杰, 刘芙蓉. 甲烷水合物分解动力学模型[J]. 天然气地球科学, 2006, 17(6): 880-883.
[12] 蒋观利,吴青柏,蒲毅彬,邢莉莉. 甲烷水合物形成过程的CT识别原理和成像特征[J]. 天然气地球科学, 2005, 16(6): 814-817.
[13] 郑军卫;. 美国国家甲烷水合物多年研发计划简介[J]. 天然气地球科学, 2001, 12(1-2): 42-45.
[14] 郑艳红;雷怀彦. 甲烷水合物地质特征[J]. 天然气地球科学, 2001, 12(1-2): 32-35.
[15] Yamazaki Akira;郑军卫;. 日本开发甲烷水合物的技术研究和发展计划[J]. 天然气地球科学, 1998, 9(3-4): 91-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!