天然气地球科学 ›› 2021, Vol. 32 ›› Issue (2): 174–190.doi: 10.11764/j.issn.1672-1926.2020.09.009

• 天然气地质学 • 上一篇    下一篇

四川盆地及其周缘典型地区龙潭组页岩岩相划分对比及特征

何燚1(),唐玄1(),单衍胜2(),刘光祥3,谢皇长1,马子杰1   

  1. 1.中国地质大学(北京)能源学院/自然资源部页岩气资源战略评价重点实验室,北京 100083
    2.中国地质调查局油气资源调查中心,北京 100083
    3.中国石化石油勘探开发研究院,北京 100083
  • 收稿日期:2020-07-19 修回日期:2020-09-15 出版日期:2021-02-10 发布日期:2021-03-10
  • 通讯作者: 唐玄,单衍胜 E-mail:2316595340@qq.com;tangxuan@cugb.edu.cn;shanger@sohu.com
  • 作者简介:何燚(1992-),男,湖北十堰人,硕士研究生,主要从事非常规油气地质评价研究.E-mail:2316595340@qq.com.
  • 基金资助:
    国家自然科学基金项目(41972132);国家科技重大专项“大型油气田及煤层气开发复杂油气田地质与高效钻采新技术”项目“陆相深水储集体成因机制与储层地质评价”课题(2017ZX05009-002);中央高校基本科研业务费专项资金联合资助

Lithofacies division and comparison and characteristics of Longtan Formation shale in typical areas of Sichuan Basin and its surrounding

Yi HE1(),Xuan TANG1(),Yan-sheng SHAN2(),Guang-xiang LIU3,Huang-chang XIE1,Zi-jie MA1   

  1. 1.China University of Geosciences (School of Energy)/Key Laboratory of Strategic Evaluation of Shale Gas Resources,Ministry of Natural Resources,Beijing 100083,China
    2.Petroleum Resources Survey Center,China Geological Survey,Beijing 100083,China
    3.Petroleum Exploration and Production Research Institute,SINOPEC,Beijing 100083,China
  • Received:2020-07-19 Revised:2020-09-15 Online:2021-02-10 Published:2021-03-10
  • Contact: Xuan TANG,Yan-sheng SHAN E-mail:2316595340@qq.com;tangxuan@cugb.edu.cn;shanger@sohu.com
  • Supported by:
    The National Natural Science Foundation of China(41972132);The China National Science and Technology Major Project(2017ZX05009-002);The Fundamental Research Funds for the Central Universities

摘要:

海陆过渡相页岩类型多、有机质类型复杂,既不完全同于陆相也不完全同于海相页岩特征,探讨海陆过渡相页岩岩相及其特征是进一步认识页岩气储集空间、赋存机理和富集规律的基础和前提。以四川盆地及其周缘典型地区二叠系龙潭组海相M1井和陆相DC1井页岩为研究对象,结合岩心观察、普通光学薄片观察、氩离子抛光扫描电镜观察等实验手段,对页岩岩相进行划分对比并描述其特征。结果表明:四川盆地及其周缘典型地区龙潭组页岩岩相按照矿物含量可划分为5个大类,分别为黏土质页岩相、钙质页岩相、硅质页岩相、钙质混合页岩相和硅质混合页岩相。根据有机质丰度进一步划分出8个小类,分别为特高有机质硅质页岩相、特高有机质硅质混合页岩相、特高有机质黏土质页岩相、高有机质硅质页岩相、高有机质黏土质页岩相、中有机质钙质混合页岩相、中有机质黏土质页岩相和低有机质钙质页岩相。其中黏土质页岩相、硅质页岩相和硅质混合页岩相有机质丰度高为有利产层;钙质和钙质混合页岩相有机质丰度低为不利产层;黏土质页岩相是页岩岩相中最为普遍发育的岩相;海陆过渡相的黏土质页岩相页岩有机质丰度高于海相的黏土质页岩相页岩。

关键词: 海陆过渡相, 海相, 四川盆地及周缘典型地区, 龙潭组, 页岩岩相, 有机质特征

Abstract:

There are many types of transitional facies shale, and the types of organic matter are complex. They are neither completely the same as continental nor completely the same as the characteristics of marine shale. Discussing transitional shale facies and their characteristics is a further understanding of shale gas storage space. This paper takes the Well M1 and Well DC1 shale of Permian Longtan Formation in the Sichuan Basin and its surrounding areas as the research objects , combined with core observation, ordinary optical thin section observation, and argon ion polishing scanning electron microscope observation. The lithofacies are divided and compared and their characteristics are described. The results indicate that the shale lithofacies of the Longtan Formation in the typical areas of the Sichuan Basin and its periphery can be divided into five major categories according to the mineral content, which are clay shale facies, calcareous shale facies, siliceous shale facies, calcareous mixed shale facies, siliceous mixed shale facies. According to the abundance of organic matter, eight sub-categories are further divided into ultra-high organic matter siliceous shale facies, ultra-high organic matter siliceous mixed shale facies, ultra-high organic matter clay shale facies, high organic matter siliceous shale facies, high-organic clay shale facies, medium-organic calcareous shale facies, medium-organic clay shale facies and low-organic calcareous shale facies. Clay shale facies, siliceous shale facies and siliceous mixed shale lithofacies with high abundance of organic matter is favorable production zone, while calcareous and calcareous mixed shale facies with low abundance of organic matter is an unfavorable production zone. Clay shale facies is the most commonly developed lithofacies in shale facies. The abundance of organic matter in clay facies shale facies is higher than that of marine clay shale facies shale.

Key words: Transitional facies, Marine facies, Typical areas in the Sichuan Basin and its periphery, Longtan Formation, Shale facies, Characteristics of organic matter

中图分类号: 

  • TE122.2

图1

研究区龙潭组沉积相、等厚线及采样位置[9-11]"

图2

M1井(a)和DC1井(b)地层柱状图"

图3

M1井和DC1井矿物组成三角图"

表1

M1井及DC1井岩相划分结果"

井号样品号深度/m矿物组成/%矿物含量分类 (大类)TOC /%TOC等级

有机质丰度分类

(小类)

黏土矿物石英+长石碳酸盐矿物
M1井M24 941.5361940钙质混合页岩相1.41中有机质钙质混合页岩相
M54 944.4165422硅质页岩相9.88特高特高有机质硅质页岩相
M94 949.2384710硅质混合页岩相9.22特高特高有机质硅质混合页岩相
M114 951.2256110硅质页岩相2.01高有机质硅质页岩相
M154 955.7221263钙质页岩相0.37低有机质钙质页岩相
M164 956.8651215黏土质页岩相1.62中有机质黏土质页岩相
M194 959.455203黏土质页岩相3.39高有机质黏土质页岩相
M204 960.467174黏土质页岩相4.66特高特高有机质黏土质页岩相
M214 962.358340黏土质页岩相3.05高有机质黏土质页岩相
DC1井D1632.655.333.10黏土质页岩相12.8特高特高有机质黏土质页岩相
D267125.374.7012.8特高
D4723.288.211.80黏土质页岩相7.15特高特高有机质黏土质页岩相
D6854.141.156.70硅质页岩相2.91高有机质硅质页岩相
D7862.654.328.815.8黏土质页岩相2.91高有机质黏土质页岩相
D8891.576.619.13.9黏土质页岩相5.32特高特高有机质黏土质页岩相
D9920.760.233.66.2黏土质页岩相2.72高有机质黏土质页岩相
D10957.887.512.30.2黏土质页岩相18.5特高特高有机质黏土质页岩相

表2

M1井和DC1井龙潭组矿物组分"

井号编号井深/m岩性黏土/%石英/%钾长石/%斜长石/%方解石/%白云石/%黄铁矿/%菱铁矿/%硬石膏/%
M1井M24 941.5灰色灰质页岩3616/31129311
M54 944.4灰黑色炭质页岩2145/320641/
M94 949.2灰黑色炭质页岩3843/4643/2
M114 951.2灰黑色炭质页岩2559/2824//
M154 955.7灰色泥质页岩2211/14593//
M164 956.8灰黑色页岩658/4114611
M194 959.4灰黑色页岩5520//12193/
M204 960.4灰黑色页岩675111/412//
M214 962.3灰黑色含砂页岩5819/15//7/1
DC1井D1632.6灰黑色含砂页岩55.329.90.92.3//10.3/1.3
D267125.374.7///////
D4723.2黑色炭质页岩88.211.8///////
D6854.1灰黑色粉砂质页岩41.141.90.614.2//2.2//
D7862.6黑色炭质页岩54.319.41.28.2/15.81.1//
D8891.5黑色炭质页岩76.6152.21.93.9/0.4//
D9920.7灰黑色粉砂质页岩60.2230.89.86.2////
D10957.8黑色炭质页岩87.511.90.4/0.2////

表3

M1井和DC1井龙潭组黏土矿物组成"

井号编号井深/m岩性伊利石/%高岭石/%绿泥石/%伊/蒙混层/%绿/蒙混层/%伊/蒙混层比/%
M1井M24 941.5灰色灰质页岩581/41/35
M54 944.4灰黑色炭质页岩581140/35
M94 949.2灰黑色炭质页岩62//38/30
M114 951.2灰黑色炭质页岩551143/35
M154 955.7灰色泥质页岩56//44/30
M164 956.8灰黑色页岩40/159/30
M194 959.4灰黑色页岩22758435
M204 960.4灰黑色页岩193474/35
M214 962.3灰黑色含砂页岩2561453235
DC1井D1632.6灰黑色含砂页岩9383320/10
D2671293832///
D4723.2黑色炭质页岩3431638/10
D6854.1灰黑色粉砂质页岩462169/25
D7862.6黑色炭质页岩451576/25
D8891.5黑色炭质页岩391375/25
D9920.7灰黑色粉砂质页岩1153549/25
D10957.8黑色炭质页岩/6436///

表4

M1井透射光+荧光干酪根类型分析结果"

井深/m层位岩性腐泥组/%壳质组/%镜质组/%惰质组/%干酪根类型
4 942.6龙潭组黑色炭质页岩40.5758.810.63
4 946.8龙潭组黑色炭质页岩67.832.22
4 949.15龙潭组黑色炭质页岩0.3270.8328.210.642
4 951.2龙潭组黑色炭质页岩70.3229.682
4 952.1龙潭组黑色炭质页岩0.9375.6923.382
4 957.75龙潭组黑色页岩0.6322.8873.982.51
4 959.37龙潭组黑色页岩0.333.9693.42.31
4 960.42龙潭组黑色页岩0.3133.9665.110.62
4 962.3龙潭组黑色页岩30.1968.241.57
4 963.25龙潭组黑色页岩21.7376.361.92

图4

M1井、DC1井典型样品有机质显微组分扫描电镜照片(a)M1井,M1样品,4 940.5 m;(b)M1井,M3样品,4 942.6 m;(c)DC1井,D1样品,632.6 m;(d)DC1井,D2样品,671 m;(e)M1井,M11样品,4 951.2 m;(f)M1井,M15样品,4 955.7 m;(g)DC1井,D4样品,723.2 m;(h)DC1井,D6样品,854.1 m;(i)M1井,M18样品,4 957.8 m;(j)M1井,M21样品,4 962.3 m;(k)DC1井,D8样品,891.5 m;(l)DC1井,D10样品,957 m"

图5

M1井龙潭组泥页岩岩相类型及特征(a)特高有机质硅质混合页岩相,M9样品,4 949.15 m, TOC=9.22%;(b)特高有机质硅质页岩相,M5样品,4 944.4 m, TOC=9.88%;(c)特高有机质黏土质页岩相,M20样品,4 960.42 m, TOC=4.696%;(d)高有机质硅质页岩相,M11样品,4 951.2 m, TOC=2.01%;(e)高有机质黏土质页岩相,M21样品,4 962.3 m, TOC=3.05%;(f)中有机质钙质混合页岩相,M2样品,4 941.5 m, TOC=1.41%;(g)中有机质黏土质页岩相,M16样品,4 956.8 m, TOC=1.62%;(h)灰色含泥灰岩,M15样品,4 955.7 m, TOC=0.369%"

图6

DC1井龙潭组页岩岩相类型及镜下特征(a)特高有机质黏土质页岩相,D4样品,723.2 m, TOC=7.15%;(b)高有机质黏土质页岩相,D7样品,862.6 m, TOC=2.91%;(c)高有机质砂质页岩相,D6样品,854.1 m, TOC=2.91%;(d)煤,D2样品,671 m, TOC=42.8%"

图7

M1和DC1井龙潭组泥页岩孔隙特征(a)方解石晶体之间紧密镶嵌状接触,见腔孔状生物碎屑粒内孔隙和溶蚀孔隙;(b)方解石晶体呈微晶结构,呈紧密镶嵌状接触,发育次生溶蚀孔隙;(c)方解石晶体呈粒状,粒间孔隙发育;(d)抛光处理样,黑色炭质泥岩,黏土矿物颗粒紧密接触,晶间孔隙发育;(e)石英、长石和黄铁矿粒间孔;(f)抛光处理样,发育黏土粒内溶蚀孔;(g)抛光处理样,黑色炭质泥岩,发育黏土粒内孔;(h)抛光样处理,发育有机质孔和黏土粒内孔"

图8

M1井和DC1井不同页岩岩相孔隙特征"

表5

优势页岩岩相孔隙结构特征"

岩相沉积相孔隙类型孔隙形态特征孔径范围(峰值)DFT孔隙体积BET比表面积孔径分布曲线特征孔隙发育情况
特高有机质 黏土质页岩相海陆过渡相(DC1井)矿物粒间孔、黏土矿物粒内孔,有机孔欠发育,有机质周缘孔缝较发育狭缝型,墨水瓶型,喉道分选差5 nm、 20 nm0.018~0.038~25双峰型发育
高有机质黏土质页岩相海陆过渡相(DC1井)矿物粒间孔、黏土矿物粒内孔,有机孔欠发育,有机质周缘孔缝较发育狭缝型,墨水瓶型,喉道分选差20 nm0.02~0.0310~15单峰型较发育
黏土质页岩相海相(M1井)矿物粒间孔、黏土矿物粒内孔,有机孔欠发育狭缝型4 nm0.02~0.0358~15单峰型特高有机质黏土质页岩相最发育
高有机质硅质页岩相海陆过渡相(DC1井)矿物粒间孔,有机孔欠发育狭缝型,墨水瓶型,喉道分选差20 nm0.02~0.0310~15单峰型较发育
硅质页岩相海相(M1井)矿物粒间孔,有机孔较发育狭缝和墨水瓶型2 nm、4 nm0.01~0.0355~30双峰型特高有机质硅质页岩相最发育
硅质混合 页岩相海相(M1井)矿物粒间孔,有机孔较发育2 nm、4 nm0.02522双峰型较发育
钙质混合 页岩相海相(M1井)生物碎屑粒内孔,溶蚀孔,矿物粒间孔墨水瓶型,圆柱型和板型10 nm0~0.040~15单峰型发育

表6

不同岩相沉积环境、有机质特征和成藏的影响对比"

矿物含量分类(大类)沉积相及井号有机质丰度分类(小类)有机显微组分特征显微组分形态黄铁矿含量储层特征
黏土质页岩相海相 M1井中有机质黏土质页岩相Ⅲ型,壳质组和镜质组为主,个体细碎个体直径一般小于50 μm,结构不完整普遍发育黄铁矿,与TOC呈正相关主要发育矿物粒间孔,黏土矿物粒内孔,多为狭缝型,主要孔径在4 nm左右
高有机质黏土质页岩相
特高有机质黏土质页岩相
海陆过渡相DC1井特高有机质黏土质页岩相Ⅲ型,惰质组和镜质组为主个体较大,结构完整,一般大于50 μm黄铁矿含量非均质性较强,与TOC关系不明显主要发育矿物粒间孔,黏土矿物粒内孔,孔隙多为狭缝、墨水瓶型,分选差,主要为20 nm孔
高有机质黏土质页岩相
硅质 页岩相海相M1井特高有机质硅质页岩相II型,壳质组和镜质组为主,少量腐泥组个体直径一般小于50 μm,结构不完整普遍发育黄铁矿,与TOC呈正相关主要为矿物粒间孔,孔隙多为狭缝、墨水瓶型,主要为2 nm、4 nm孔
海陆过渡相DC1井高有机质硅质页岩相Ⅲ型,惰质组和镜质组为主个体直径一般小于50 μm,结构不完整黄铁矿含量非均质性较强,与TOC关系不明显主要发育矿物粒间孔,孔隙多为狭缝、墨水瓶型,主要为20 nm孔
钙质 页岩相海相 M1井低有机质钙质页岩相Ⅲ型,惰质组和镜质组为主个体直径一般小于50 μm,结构不完整普遍发育黄铁矿,与TOC呈正相关生物碎屑粒内孔,溶蚀孔,矿物粒间孔,孔隙为墨水瓶、圆柱形、板形,主要为10 nm孔
钙质混合页岩相海相 M1井中有机质钙质混合页岩相Ⅲ型,惰质组和镜质组为主个体较小,一般小于25 μm普遍发育黄铁矿,与TOC呈正相关
硅质混合 页岩相海相 M1井特高有机质硅质混合页岩相Ⅲ型,惰质组和镜质组为主个体较小,一般小于25 μm普遍发育黄铁矿,与TOC呈正相关矿物粒间孔、有机孔发育,狭缝和墨水瓶型,主要2 nm、4 nm孔

图9

不同岩相多井多区域综合"

表7

四川盆地龙潭组海陆过渡相不同岩相页岩气形成条件对比"

岩相有机质特征储层特征含气性
TOC有机质类型孔隙特征孔隙分布特征
黏土质 页岩相有机质丰度变化很大, 为0.1%~20%Ⅲ型为主中孔,平板狭缝型为主,黏土矿物孔,微裂缝为主,有机质孔少孔径变化范围较大, 1%到10%较为稳定, 解析气1.5~2 m3/t
硅质 页岩相整体较为稳定,5%左右Ⅲ型为主, 部分II型有机孔相对较为发育,主要发育矿物粒间孔,多为狭缝型,部分为圆型或椭圆型孔径和沉积环境关系较为密切,海相的较为稳定3%左右,海陆过渡相变化较大为1%~10%较为稳定, 解析气1.5 m3/t左右
钙质 页岩相一般很低,1%以下Ⅲ型为主较多的溶蚀孔和生物碎屑孔,圆柱型和墨水瓶型变化大,一般在有溶蚀孔样品中孔隙度高5%以上,其他为1%左右较低, 解析气1 m3/t以下
混合 页岩相一般较低,为1%~5%Ⅲ型为主其中有机质孔孔径较小,无机孔隙主要为黏土矿物晶间孔和碎屑颗粒原生粒间孔,狭缝型和墨水瓶型孔径分布较为集中,3%左右比较普遍较稳定, 解析气1.3 m3/t
1 张金川,金之钧,袁明生,等.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18,131-132.
ZHANG J C, JIN Z J, YUAN M S, et al. Shale gas accumulation mechanism and distribution[J]. Natural Gas Industry, 2004,24(7): 15-18,131-132.
2 孙盈,琚宜文,罗克勇,等.基于盆地演化的海陆过渡相页岩气形成过程研究——以鄂尔多斯盆地东南部山西组为例[C]//中国地球科学联合学术年会论文集.北京:地质出版社,2016:643-644.
SUN Y, JU Y W, LUO K Y, et al. Research on the formation process of marine-terrestrial shale gas based on basin evolution: Taking Shanxi Formation in the southeast of Ordos Basin as an example[C]//Proceedings of China Earth Sciences Joint Academic Annual Conference. Beijing: Geology Press, 2016:643-644.
3 王嘉先.贵州德江地区中—晚奥陶世沉积相及岩相古地理特征[D].成都:成都理工大学,2018:1-68.
WANG J X. Middle-Late Ordovician Sedimentary Facies and Lithofacies Paleogeographic Features in Dejiang Area, Guizhou[D].Chengdu: Chengdu University of Technology, 2018:1-68.
4 袁桃, 魏祥峰, 张汉荣, 等. 四川盆地及周缘上奥陶统五峰组—下志留统龙马溪组页岩岩相划分[J].石油实验地质,2020,42(3):371-377.
YUAN T, WEI X F, ZHANG H R, et al. The division of shale facies in the Upper Ordovician Wufeng Formation and Lower Silurian Longmaxi Formation in the Sichuan Basin and its periphery[J]. Petroleum Geology and Experiment,2020,42(3):371-377.
5 ROBERT G, FRANCIS. Barnett Shale Update[M]. Fort Worth: Fort Worth Business Press,2007:8.
6 王玉满,董大忠,李新景,等.中国页岩气勘探开发新突破及发展前景思考[J].天然气工业,2016,36(1):19-32.
WANG Y M, DONG D Z, LI X J, et al. New breakthroughs in China's shale gas exploration and development and development prospects[J]. Natural Gas Industry,2016,36(1):19-32.
7 姜振学,唐相路,李卓,等.中国典型海相和陆相页岩储层孔隙结构及含气性[M].北京:科学出版社,2018:1-388.
JIANG Z X, TANG X L, LI Z, et al. Pore Structure and Gas-bearing Properties of Typical Marine and Continental Shale Reservoirs in China[M]. Beijing: Science Press,2018:1-388.
8 梁东星,胡素云,谷志东,等.四川盆地开江古隆起形成演化及其对天然气成藏的控制作用[J].天然气工业,2015,35(9):35-41.
LIANG D X,HU S Y, GU Z D, et al. The formation and evolution of the Kaijiang paleo-uplift in the Sichuan Basin and its control on natural gas accumulation[J]. Natural Gas Industry,2015,35(9):35-41.
9 刘光祥,金之钧,邓模,等.川东地区上二叠统龙潭组页岩气勘探潜力[J].石油与天然气地质,2015,36(3): 481-487.
LIU G X, JIN Z J, DENG M, et al. The shale gas exploration potential of the Upper Permian Longtan Formation in the eastern Sichuan Basin[J].Oil and Gas Geology,2015,36(3):481-487.
10 汪浩,郭立君,洪愿进,等.黔西织纳煤田上二叠统层序地层及聚煤作用[J].古地理学报,2011,13(5):493-500.
WANG H, GUO L J, HONG Y J, et al. Upper Permian sequence stratigraphy and coal accumulation in China coal field, west Guizhou[J]. Journal of Palaeogeography,2011,13(5): 493-500.
11 罗进雄,何幼斌,王丹,等.贵州桐梓松坎二叠系岩石特征及沉积环境分析[J].科技导报,2013,31(2):37-44.
LUO J X, HE Y B, WANG D, et al. Rock characteristics and sedimentary environment analysis of the Permian in Tongzi Songkan, Guizhou[J]. Science and Technology Review,2013,31(2):37-44.
12 谢皇长.海陆过渡相页岩岩相及孔隙结构特征——以川南—黔北地区龙潭组为例[D].北京:中国地质大学(北京),2019:1-89.
XIE H C. Characteristics of Lithofacies and Pore Structure of Marine-continent Transitional Facies Shale: Taking Longtan Formation in Southern Sichuan-Northern Guizhou as an Example[D].Beijing: China University of Geosciences(Beijing),2019:1-89.
13 吴根耀,关静.地球科学大词典:基础学科卷[M].北京:地质出版社.2006:1-651.
WU G Y,GUAN J.A Dictionary of Earth Sciences:Basic Subject Volume[M].Beijing:Geological Science Press.2006:1-651.
14 冯增昭.沉积相的一些术语定义的评论[J].古地理学报,2020,22(2):207-220.
FENG Z Z. Comment on the definition of some terms of sedimentary facies[J]. Journal of Palaeogeography, 2020,22(2):207-220.
15 MARSHALL J D. Carbonate depositional environments[J]. Geological Journal,1984,19(4):399-341.
16 王超,张柏桥,舒志国,等.四川盆地涪陵地区五峰组—龙马溪组海相页岩岩相类型及储层特征[J].石油与天然气地质,2018,39(3):485-497.
WANG C, ZHANG B Q, SHU Z G, et al. Lithofacies and reservoir characteristics of marine shale from Wufeng Formation to Longmaxi Formation in Fuling area, Sichuan Basin[J].Oil and Gas Geology, 2018,39(3):485-497.
17 董春梅,马存飞,林承焰,等.一种泥页岩层系岩相划分方法[J].中国石油大学学报,2015,39(3):1-7.
DONG C M, MA C F, LIN C Y, et al. A lithofacies division method of shale strata[J].Journal of China University of Petroleum,2015,39(3):1-7.
18 刘忠宝,刘光祥,胡宗全,等.陆相页岩层系岩相类型、组合特征及其油气勘探意义——以四川盆地中下侏罗统为例[J].天然气工业,2019,39(12):10-21.
LIU Z B, LIU G X, HU Z Q, et al. Lithofacies types, assemblage characteristics of continental shale strata and their significance for oil and gas exploration: Taking the Middle and Lower Jurassic in the Sichuan Basin as an example[J].Natural Gas Industry,2019.39(12):10-21.
19 王超,张柏桥,陆永潮,等.焦石坝地区五峰组—龙马溪组一段页岩岩相展布特征及发育主控因素[J].石油学报,2018,39(6):631-644.
WANG C, ZHANG B Q, LU Y C, et al. Lithofacies distribution and main controlling factors of shale in the first member of Wufeng Formation-Longmaxi Formation in Jiaoshiba area[J].Acta Petrolei Sinica,2018,39(6):631-644.
20 蒋裕强,宋益滔,漆麟,等.中国海相页岩岩相精细划分及测井预测:以四川盆地南部威远地区龙马溪组为例[J].地学前缘,2016,23(1):107-118.
JIANG Y Q, SONG Y T, QI L, et al. Fine division and logging prediction of Chinese marine shale facies: Taking the Longmaxi Formation in the Weiyuan area of the southern Sichuan Basin as an example[J]. Earth Science Frontiers,2016,23(1):107-118.
21 赵建华,金之钧,金振奎,等.四川盆地五峰组一龙马溪组页岩岩相类型与沉积环境[J].石油学报,2016,37(5):572-586.
ZHAO J H, JIN Z J, JIN Z K, et al. Lithofacies and sedimentary environment of shale of Wufeng Formation and Longmaxi Formation in Sichuan Basin[J].Acta Petrolei Sinica,2016,37(5):572-586.
22 冉波,刘树根,孙玮,等.四川盆地及周缘下古生界五峰组-龙马溪组页岩岩相分类[J].地学前缘,2016,23(2):96-107.
RAN B, LIU S G, SUN W, et al. Lithofacies classification of shale of Lower Paleozoic Wufeng-Longmaxi Formation in Sichuan Basin and its periphery[J]. Earth Science Frontiers,2016,23(2):96-107.
23 左如斯,杨威,王乾右,等.川西坳陷须家河组陆相页岩岩相控制下的微观储集特征[J].特种油气藏,2016,26(6):22-26.
ZUO R S, YANG W, WANG G Y, et al. Micro-reservoir characteristics under the control of continental shale facies in the Xujiahe Formation in the western Sichuan Depression[J]. Special Oil and Gas Reservoirs,2016,26(6):22-26.
24 邵淑骁,曾溅辉,张善文,等.东营凹陷沙河街组砂岩储层高岭石类型、特征及其成因[J].沉积学报,2015,33(6):1204-1216.
SHAO S X, ZENG J H, ZHANG S W, et al. Types, characteristics and genesis of kaolinite in sandstone reservoirs of Shahejie Formation in Dongying Sag[J]. Acta Sedimentologica Sinica,2015,33(6):1204-1216.
25 ROWE H D,LOUCKS R G,RUPPEL S C, et al. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk geochemical inferences and Mo-TOC constraints on the severity of hydrographic restriction[J].Chemical Geology,2009,257(1-2):16-25.
26 聂海宽.页岩气聚集机理及其应用[D].北京:中国地质大学(北京),2010:1-137.
NIE H K. Shale Gas Accumulation Mechanism and Its Application[D].Beijing: China University of Geosciences(Beijing),2010:1-137.
27 李卓,姜振学,唐相路,等.渝东南下志留统龙马溪组页岩岩相特征及其对孔隙结构的控制[J].地球科学,2017,42(7): 1116-1123.
LI Z, JIANG Z X, TANG X L, et al. Lithofacies of the Lower Silurian Longmaxi Formation shale in southeast Chongqing and its control on pore structure[J].Earth Science,2017,42(7): 1116-1123.
28 单衍胜,毕彩芹,迟焕鹏,等.六盘水地区杨梅树向斜煤层气地质特征与有利开发层段优选[J].天然气地球科学,2018,29(1): 122-129.
SHAN Y S, BI C Q, CHI H P, et al. Geological characteristics of coalbed methane in Yangmeishu syncline and optimization of favorable development intervals in Liupanshui area[J].Natural Gas Geoscience,2018,29(1): 122-129.
29 唐玄,张金川,丁文龙,等.鄂尔多斯盆地东南部上古生界海陆过渡相页岩储集性与含气性[J].地学前缘,2016,23(2):147-157.
TANG X, ZHANG J C, DING W L, et al. Reservoir and gas-bearing properties of Upper Paleozoic marine-continent transition facies shale in the southeastern Ordos Basin[J]. Ear-th Science Frontiers,2016,23(2): 147-157.
30 单衍胜,毕彩芹,迟焕鹏,等.六盘水地区杨梅树向斜煤层气地质特征与有利开发层段优选[J].天然气地球科学,2018,29(1): 122-129.
SHAN Y S, BI C Q, CHI H P, et al. Geological characteristics of coalbed methane in Yangmeishu syncline and optimization of favorable development intervals in Liupanshui area[J].Natural Gas Geoscience,2018,29(1): 122-129.
31 吴家洋,吕正祥,卿元华,等.致密油储层中自生绿泥石成因及其对物性的影响——以川中东北部沙溪庙组为例[J].岩性油气藏,2020,32(1):76-85.
WU J Y, LV Z X, QING Y H, et al. Genesis of authigenic chlorite in tight oil reservoirs and its influence on physical properties: Taking the Shaximiao Formation in the north of the middle east of Sichuan as an example[J]. Lithologic Reservoirs,2020,32(1):76-85.
32 靳平平,欧成华,马中高,等.蒙脱石与相关黏土矿物的演变规律及其对页岩气开发的影响[J].石油物探, 2018,57(3):344-355.
JIN P P, OU C H, MA Z G, et al. Evolution of montmorillonite and related clay minerals and their influence on shale gas development[J].Geophysical Prospecting for Petroleum,2018,57(3):344-355.
33 WANG Y M,DONG D Z,YANG H,et al. Quantitative characterization of reservoir space in the Lower Silurian Longmaxi Shale, southern Sichuan, China[J]. Earth Sciences,2014,57(2): 313-322.
34 THOMMES M. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J].Chemistry International, 2016,38(1):25-43.
35 刘虎,曹涛涛,戚明辉,等.四川盆地东部华蓥山地区龙潭组页岩气储层特征[J].天然气地球科学, 2019, 30(1):11-26.
LIU H, CAO T T, QI M H, et al. Characteristics of Longtan Formation shale gas reservoir in Huayingshan Area, eastern Sichuan Basin[J]. Natural Gas Geoscience, 2019, 30(1):11-26.
36 郭旭升,胡东风,刘若冰,等.四川盆地二叠系海陆过渡相页岩气地质条件及勘探潜力[J].天然气工业,2018,30(10):11-18.
GUO X S, HU D F, LIU R B, et al. Geological conditions and exploration potential of Permian marine-continent transitional facies shale gas in the Sichuan Basin[J]. Natural Gas Industry,2018,30(10):11-18.
37 王超,张柏桥,舒志国,等.四川盆地涪陵地区五峰组-龙马溪组海相页岩岩相类型及储层特征[J].石油与天然气地质,2018,39(3):485-497.
WANG C, ZHANG B Q, SHU Z G, et al. Lithofacies and reservoir characteristics of marine shale from Wufeng Formation to Longmaxi Formation in Fuling area, Sichuan Basin[J].Oil and Gas Geology,2018,39(3):485-497.
38 吴蓝宇,胡东风,陆永潮,等.四川盆地涪陵气田五峰组—龙马溪组页岩优势岩相[J].石油勘探与开发,2016,43(2):189-197.
WU L Y, HU D F, LU Y C, et al. The dominant lithofacies of shale from Wufeng Formation to Longmaxi Formation in Fuling Gas Field, Sichuan Basin[J].Petroleum Exploration and Development,2016,43(2):189-197.
39 袁桃,魏祥峰,张汉荣,等.四川盆地及周缘上奥陶统五峰组—下志留统龙马溪组页岩岩相划分[J].石油实验地质,2020,42(3):371-377.
YUAN T, WEI X F, ZHANG H R, et al. Lithofacies division of shale from Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation in the Sichuan Basin and its periphery[J].Petroleum Geology & Experiment,2020,42(3):371-377.
40 赵培荣,高波,郭战峰,等.四川盆地上二叠统海陆过渡相和深水陆棚相页岩气的勘探潜力[J].石油实验地质,2020:42(3):335-344.
ZHAO P R, GAO B, GUO Z F, et al. The exploration potential of Upper Permian marine-continent transition facies and deep-water shelf facies shale gas in Sichuan Basin[J].Petroleum Geology & Experiment,2020,42(3):335-344.
[1] 李剑, 王晓波, 侯连华, 陈昌, 国建英, 杨春龙, 王义凤, 李志生, 崔会英, 郝爱胜, 张璐. 四川盆地页岩气地球化学特征及资源潜力[J]. 天然气地球科学, 2021, 32(8): 1093-1106.
[2] 高阳东, 向绪洪, 张向涛. 南海北部新生代沉积演变及其油气地质意义[J]. 天然气地球科学, 2021, 32(5): 645-656.
[3] 郭春礼, 杨爽, 王安东, 王一婷, 章双龙, 祁星. 修武盆地下寒武统海相页岩储层及CH4吸附特征[J]. 天然气地球科学, 2021, 32(4): 598-610.
[4] 胡国艺, 贺飞, 米敬奎, 袁懿琳, 郭谨豪. 川西北地区海相烃源岩地球化学特征、分布规律及天然气勘探潜力[J]. 天然气地球科学, 2021, 32(3): 319-333.
[5] 朱光有, 张怀顺, 汤顺林, 孙广义, 丁玉祥. 塔里木盆地海相原油汞同位素组成特征[J]. 天然气地球科学, 2021, 32(3): 347-355.
[6] 刘世明, 唐书恒, 霍婷, 谭富荣, 刘达成, 王金喜. 柴达木盆地东缘上石炭统泥页岩孔隙结构及分形特征[J]. 天然气地球科学, 2020, 31(8): 1069-1081.
[7] 李斌, 梅文华, 李琪琪, 卓勤功, 鲁雪松, 郭强. 四川盆地西北部前陆盆地构造演化对古生界海相油气成藏的影响[J]. 天然气地球科学, 2020, 31(7): 993-1003.
[8] 邱振, 邹才能, 王红岩, 董大忠, 卢斌, 陈振宏, 刘德勋, 李贵中, 刘翰林, 何江林, 魏琳. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学, 2020, 31(2): 163-175.
[9] 陈斐然, 魏祥峰, 刘珠江, 敖明冲, 燕继红. 四川盆地二叠系龙潭组页岩孔隙发育特征及主控因素[J]. 天然气地球科学, 2020, 31(11): 1593-1602.
[10] 鲍园, 安超, 琚宜文, 尹中山, 熊建龙, 王文愽. 川南煤田古叙矿区DC⁃5井上二叠统龙潭组煤层甲烷吸附性及其主控因素[J]. 天然气地球科学, 2020, 31(1): 93-99.
[11] 杨娟, 王作栋, 薄海波, 张婷, 吉生军, 王静莹. 下马岭组油页岩热模拟实验抽提物中三芴系列化合物演化特征[J]. 天然气地球科学, 2019, 30(7): 1063-1071.
[12] 秦胜飞, 白斌, 袁苗, 周国晓, 杨晋东. 四川盆地中部地区海相储层煤成气来源[J]. 天然气地球科学, 2019, 30(6): 790-797.
[13] 曹香妮,姜振学,朱德宇,仇恒远,陈磊,罗东东,双子俊,李维邦. 川东北地区自流井组陆相页岩岩相类型及储层发育特征[J]. 天然气地球科学, 2019, 30(12): 1782-1793.
[14] 刘虎, 曹涛涛, 戚明辉, 王东强, 邓模, 曹清古, 程斌, 廖泽文. 四川盆地东部华蓥山地区龙潭组页岩气储层特征[J]. 天然气地球科学, 2019, 30(1): 11-26.
[15] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[3] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[4] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[5] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[6] . 西部天然气资源全面大开发在即[J]. 天然气地球科学, 2000, 11(1): 27 .
[7] 赵生才;. 香山科学会议第268次学术讨论会“中国煤层气资源及产业化”召开[J]. 天然气地球科学, 0, (): 6 .
[8] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[9] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[10] Cramer B;Faber E;Gerling P;Krooss B M;刘全有(译). 天然气稳定碳同位素反应动力学研究――关于干燥、开放热解实验中的思考[J]. 天然气地球科学, 2002, 13(5-6): 8 -18 .