天然气地球科学

• 天然气开发 • 上一篇    下一篇

四川盆地龙马溪组页岩储层缝网导流能力优化

张晗   

  1. 中国石化重庆涪陵页岩气勘探开发有限公司,重庆 408014
  • 收稿日期:2018-12-06 修回日期:2019-01-27 出版日期:2019-07-10
  • 作者简介:张晗(1993-),男,四川乐山人,助理工程师,硕士,主要从事页岩气井压裂技术研究.E-mail:861117270@qq.com.
  • 基金资助:
    国家科技重大专项“涪陵页岩气开发示范工程”(编号:2016ZX05060)资助.

Conductivity optimization research of complex network fractures in shale reservoirs of Longmaxi Formation in Sichuan Basin

Zhang Han   

  1. Sinopec Chongqing Fuling Shale Gas Exploration and Development Co. Ltd.,Chongqing 408014,China
  • Received:2018-12-06 Revised:2019-01-27 Online:2019-07-10
  • About author:Zhang Han(1993-), Male, Assistant engineer, Master, Mainly engaged in fracturing technology of shale gas wells research. E-mail:861117270@qq.com.
  • Supported by:

    Supported by the China National Science and Technology Major Project “Fuling shale gas development demonstration project” (Grant No. 2016ZX05060).

摘要: 水平井分段压裂技术是页岩气开发的关键技术,其方案设计需要对缝网几何参数及导流能力进行优化。目前,借用产能预测模型优化缝网参数的过程较为复杂且忽略了自支撑裂缝对缝网导流能力的影响。根据水电相似原理,将压裂后的复杂缝网细分为支撑裂缝以及自支撑裂缝,提出了等效裂缝的概念,并得出了基于不同裂缝形态的复杂缝网导流能力优化模型,确定了支撑裂缝与自支撑裂缝导流能力之间的关系。结合四川盆地龙马溪组Y1井储层及流体参数,进行水平井分段压裂设计,优化出30/50目与40/70目陶粒的最佳铺砂浓度分别为3kg/m2和5kg/m2,70/140目支撑剂无法满足导流能力需求,自支撑裂缝能够满足导流能力需求。结合Meyer模拟得出Y1井30/50目的砂比为2.5%~3%,40/70目砂比为3.5%~4%,有效地减少了支撑剂量,并取得良好的经济产能,值得推广应用。

关键词: 页岩储层, 复杂缝网, 自支撑裂缝, 水电相似原理, 加砂规模

Abstract: The staged fracturing technology of horizontal wells is the key technology of shale gas development,and its design needs to optimize the geometry parameters and conductivity of complex network fractures.At present,the process of using productivity prediction model to optimize the parameters of network fractures is more complex and ignores the influence of self-propped fractures on the conductivity of network fractures.According to water and electricity resembling principle,complex network fractures are assumed to consist of propped fractures and self-propped fractures,and the concept of equivalent fracture is proposed.The model for conductivity optimization of complex network fractures based on different kinds of fracture morphology is presented and relationship between conductivity of propped fractures and self-propped fractures is showed in the research.Combining reservoir and fluid parameters of Well Y1,the fracturing design of horizontal wells is carried out.The optimum sand concentration of proppant of 30/50 mesh and 40/70 mesh is 3kg/m2 and 5kg/m2 respectively,the proppant of 70/140 mesh cannot meets conductivity demands,but the conductivity of self-propped fractures meets production demands.The simulation results show that the sand ratio of Well Y1 30/50 mesh is 2.5%-3%,40/70 mesh is 3.5%-4% through Meyer,which effectively reduces the mass of proppant and achieves good economic productivity.It is worth popularizing and applying.

Key words: Shale reservoirs, Complex network of fracture, Self-propped fractures, Water and electricity similitude principle, Proppant scale

中图分类号: 

  • TE377
[1]Zhang Jinchuan,Wang Zongyu,Nie Haikuan,et al.Shale gas and its significance for exploration[J].Geoscience,2008,22(4):640-646.
张金川,汪宗余,聂海宽,等.页岩气及其勘探研究意义[J].现代地质,2008,22(4):640-646.
[2]Zhang Jinchuan,Xue Hui,Zhang Deming,et al.Shale gas and its reservoir formation mechanism[J].Geoscience,2003,17(4):466.
张金川,薛会,张德明,等.页岩气及其成藏机理[J].现代地质,2003,17(4):466.
[3]Li Xin,Duan Shengkai,Sun Yang,et al.Latest progress in exploration and development of shale gas in the United States[J].Natural Gas Industry,2011,31(8):124-126.
李欣,段胜楷,孙扬,等.美国页岩气勘探最新进展[J].天然气工业,2011,31(8):124-126.
[4]Li Xinjing,Hu Suyun,Cheng Keming.Suggestions from the development of fractured shale gas in North America[J].Petroleum Exploration and Development,2007,34(4):392-400.
李新景,胡素云,程克明.北美裂缝性页岩气勘探开发的启示[J].石油勘探与开发,2007,34(4):392-400.
[5]Li Dajun,Yang Xiao,Wang Xiaolan,et al.Estimating the fracturing effect and production capacity of the Longmaxi Formation of the Lower Silurian in area W,Sichuan Basin[J].Geophysical Prospecting for Petroleum,2017,56(5):122-132.
李大军,杨晓,王小兰,等.四川盆地W地区龙马溪组页岩气压裂效果评估和产能预测研究[J].石油物探,2017,56(5):122-132.
[6]Zou Caineng,Dong Dazhong,Wang Yuman,et al.Shale gas in China:characteristics,challenges and prospects(Ⅱ)[J].Petroleum Exploration and Development,2016,43(2):166-178.
邹才能,董大忠,王玉满,等.中国页岩气特征、挑战及前景(二)[J].石油勘探与开发,2016,43(2):166-178.
[7]Ma Yongsheng,Cai Xunyu,Zhao Peirong.China’s shale gas exploration and development:Understanding and practice[J].Petroleum Exploration and Development,2018,45(4):561-574.
马永生,蔡勋育,赵培荣.中国页岩气勘探开发理论认识与实践[J].石油勘探与开发,2018,45(4):561-574.
[8]Guo J C,Zhao Z H.China vigorously promoting shale gas exploration,development[J].Oil & Gas Journal,2012,110(3):60-65.
[9]Cipolla C L,Lolon E P,Dzubin B.Evaluating stimulation effectiveness in unconventional gas reservoirs[J].SPE 124843,2009.
[10]Wu Qi,Xu Yun,Wang Tengfei,et al.The revolution of reservoir stimulation:An introduction of volume fracturing[J].Natural Gas Industry,2011,31(4):7-12.
吴奇,胥云,王腾飞,等.增产改造理念的重大变革—体积改造技术概论[J].天然气工业,2011,31(4):7-12.
[11]Zhang Shicheng,Mou Songru,Cui Yong.Analysis of numerical model of shale gas fracturing[J].Natural Gas Industry,2011,31(12):81-84.
张士诚,牟松茹,崔勇.页岩气压裂数值模型分析[J].天然气工业,2011,31(12):81-84.
[12]Zeng Jie,Deng Yan,Guo Jianchun,et al.A mathematical model for calculating the volume of proppant in shale vertical wells[C]∥Zeng Jie,Deng Yan,Guo Jianchun,et al.Ikatan Ahli Teknik Perminyakan Indonesia (SPE-IATPI)Asia Pacific Oil & Gas Conference and Exhibition.Nusa Dua:Society of Petroleum Engineers,2015:20-22.
[13]Gou Bo,Guo Jianchun.A novel design method for stimulated reservoir volume fracturing in shale horizontal wells[J].Geoscience,2013,27(1):217-222.
苟波,郭建春.页岩水平井体积压裂设计的一种新方法[J].现代地质,2013,27(1):217-222.
[14]Kamenov A,Zhu D,Hill A D,et al.Laboratory measurement of hydraulic fracture conductivities in the barnett shale[C]∥Kamenov A,Zhu D,Hill A D,et al.International Petroleum Technology Conference.Beijing:Society of Petroleum Engineers,2013:26-28.
[15]Develi K,Babadagli T.Experimental and visual analysis of single-phase flow through rough fracture replicas[J].International Journal of Rock Mechanics & Mining Sciences,2015,73:139-155.
[16]Zheng Jie.Analysis and solutions about influential parameters for hydraulic fracturing in Changning shale gas reservoirs in Sichuan Basin[J].Journal of Chongqing University of Science and Technology:Natural Sciences Edition,2017,19(3):1-6.
郑杰.四川盆地长宁地区页岩气井压裂效果影响因素分析及对策研究[J].重庆科技学院学报:自然科学版,2017,19(3):1-6.
[17]Mckenna J P.Where did the proppant go[C]∥Mckenna J.P.Unconventional Resources Technology Conference.Colorado:Society of Petroleum Engineers,2014:25-27.
[18]Guo Jianchun,Gou Bo,Yu Tian,et al.New design method of multi-stage hydraulic fracturing in shale horizontal well[C]∥Guo Jianchun,Gou Bo,Yu Tian,et al.Offshore Technology Conference Asia.Kuala Lumpur:Society of Petroleum Engineers,2014:25-28.
[19]Zhao Z H,He S G,Guo J C,et al.Hybrid fracturing pilot increases China’s Dagang tight oil production[J].Oil & Gas Journal,2016,114 (6):56-61.
[1] 谢卫东, 王猛, 代旭光, 王彦迪. 山西河东煤田中—南部煤系页岩气储层微观特征[J]. 天然气地球科学, 2019, 30(4): 512-525.
[2] 徐加祥, 丁云宏, 杨立峰, 刘哲, 陈挺. 页岩气储层迂曲微裂缝二维重构及多点起裂分析[J]. 天然气地球科学, 2019, 30(2): 285-294.
[3] 刘忠宝,冯动军,高波,李洪文,聂海宽. 上扬子地区下寒武统高演化页岩微观孔隙特征[J]. 天然气地球科学, 2017, 28(7): 1096-1107.
[4] 黄金亮,董大忠,李建忠,胡俊文,王玉满. 陆相页岩储层孔隙分形特征——以四川盆地三叠系须家河组为例[J]. 天然气地球科学, 2016, 27(9): 1611-1618.
[5] 李新景,陈更生,陈志勇,王兰生,王玉满,董大忠,吕宗刚,吕维宁,王淑芳,黄金亮,张晨晨. 高过成熟页岩储层演化特征与成因[J]. 天然气地球科学, 2016, 27(3): 407-416.
[6] 陈志鹏,梁兴,张介辉,王高成,刘臣,李兆丰,邹辰. 昭通国家级示范区龙马溪组页岩气储层超压成因浅析[J]. 天然气地球科学, 2016, 27(3): 442-448.
[7] 管全中,董大忠,王淑芳,黄金亮,王玉满,张晨. 海相和陆相页岩储层微观结构差异性分析[J]. 天然气地球科学, 2016, 27(3): 524-531.
[8] 陈彬滔,潘树新,方乐华,张庆石,李成刚,梁苏娟. 松辽盆地齐家—古龙凹陷青山口组泥页岩层段储层特征[J]. 天然气地球科学, 2016, 27(2): 298-308.
[9] 尚校森,丁云宏,杨立峰,卢拥军,鄢雪梅,王永辉. 基于结构弱面及缝间干扰的页岩缝网压裂技术[J]. 天然气地球科学, 2016, 27(10): 1883-1891.
[10] 黄保家,黄灏,金秋月,周刚,赵幸滨. 下扬子皖东南地区二叠系页岩储层特性及甲烷吸附能力[J]. 天然气地球科学, 2015, 26(8): 1516-1524.
[11] 孔令明,万茂霞,严玉霞,邹春艳,刘文平,田冲,易力. 四川盆地志留系龙马溪组页岩储层成岩作用[J]. 天然气地球科学, 2015, 26(8): 1547-1555.
[12] 王香增,刘国恒,黄志龙,孙兵华,史鹏,杨潇. 鄂尔多斯盆地东南部延长组长7段泥页岩储层特征[J]. 天然气地球科学, 2015, 26(7): 1385-1394.
[13] 程远方,常鑫,孙元伟,王欣. 基于断裂力学的页岩储层缝网延伸形态研究[J]. 天然气地球科学, 2014, 25(4): 603-611.
[14] 方朝合,黄志龙,王巧智,郑德温,刘洪林. 富含气页岩储层超低含水饱和度成因及意义[J]. 天然气地球科学, 2014, 25(3): 471-476.
[15] 李武广,杨胜来,徐晶,董谦. 考虑地层温度和压力的页岩吸附气含量计算新模型[J]. 天然气地球科学, 2012, 23(4): 791-796.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[2] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[3] 唐友军,文志刚,窦立荣,徐佑德. 一种估算原油成熟度的新方法[J]. 天然气地球科学, 2006, 17(2): 160 -162 .
[4] Cramer B;Faber E;Gerling P;Krooss B M;刘全有(译). 天然气稳定碳同位素反应动力学研究――关于干燥、开放热解实验中的思考[J]. 天然气地球科学, 2002, 13(5-6): 8 -18 .
[5] 郭精义,杨占龙,黄刚,杨立国. 潜江凹陷新农地区沉积微相特征与岩性油气藏[J]. 天然气地球科学, 2006, 17(2): 249 -255 .
[6] 付广;孟庆芬;. 断层封闭性影响因素的理论分析[J]. 天然气地球科学, 2002, 13(3-4): 40 -44 .
[7] 杨蕾;同登科;. 变形介质煤层气双渗流动压力分析[J]. 天然气地球科学, 2006, 17(3): 429 -433 .
[8] 郭克园;蔡国刚;罗海炳;王智勇;常津焕;. 辽河盆地欧利坨子地区火山岩储层特征及成藏条件[J]. 天然气地球科学, 2002, 13(3-4): 60 -66 .
[9] 杨宪彰;彭更新;雷刚林;马玉杰;黄少英;. 库车山地高陡复杂构造圈闭研究思路与方法[J]. 天然气地球科学, 2006, 17(4): 538 -542 .
[10] И Д Полякова等(俄罗斯);姜家生(译). 深层含油气潜势[J]. 天然气地球科学, 2002, 13(5-6): 38 -40 .