天然气地球科学

• 天然气开发 • 上一篇    下一篇

塔里木盆地库车坳陷天然裂缝地质力学响应对气井产能的影响

张辉,尹国庆,王海应   

  1. 中国石油塔里木油田分公司,新疆 库尔勒 841000
  • 收稿日期:2018-09-17 修回日期:2018-10-23 出版日期:2019-03-10
  • 通讯作者: 尹国庆(1979-),男,湖北襄阳人,高级工程师,主要从事油气田地质力学研究与应用工作. E-mail:yinguoqing-tlm@petrochina.com.cn.
  • 作者简介:张辉(1980-),男,青海湟中人,高级工程师,博士,主要从事油气田地质力学研究与应用工作.E-mail:zhh-tlm@petrochina.com.cn.
  • 基金资助:
    中国石油天然气股份有限公司重大科技专项“库车坳陷深层—超深层天然气田开发关键技术研究与应用”(编号:2018E-2103)资助.

Effects of natural fractures geomechanical response on gas well productivity in Kuqa Depression,Tarim Basin

Zhang Hui,Yin Guo-qing,Wang Hai-ying   

  1. Tarim Oilfield Company,PetroChina,Korla 841000,China
  • Received:2018-09-17 Revised:2018-10-23 Online:2019-03-10

摘要: 为明确影响库车坳陷深层裂缝性致密砂岩气藏气井产能主控地质因素,在对天然裂缝产状描述和储层地质力学模型建立的基础上,分析了气井中天然裂缝与现今水平主应力之间的关系,定量计算得到了每条裂缝面上的正应力和剪应力,并根据Mohr-Coulomb破坏准则,模拟不同注入压力条件下的天然裂缝的力学响应,据此建立了天然裂缝剪切滑移率的概念。发现其随构造位置的变化而变化,在构造轴部、断层发育处天然裂缝剪切滑移率更大,裂缝的潜在力学活动性更好,渗透率好,单井产能高,反之,单井产能低。另外,开发过程中随地层压力下降,天然裂缝地质力学响应的动态变化也与产能变化密切相关。以3口开发井为例,当孔隙压力下降10MPa时,其中2口井中70%的天然裂缝的剪应力与正应力比值降低,产能也随之降低;而相邻的另一口井中裂缝的剪应力与正应力比值依然保持较高,其产能也保持相对稳定,扭转了传统认为的压力下降产能必然下降的认识。结果表明天然裂缝的地质力学响应是气藏渗透率和气井产能的重要主控因素之一,是该区域储层评价中一个新的指数,也是优化井位部署和压裂改造方案的一个重要补充依据。

关键词: 库车坳陷, 天然裂缝, 地质力学响应, 现今应力, 剪切滑移率, 气井产能 

Abstract: To understand key factors to productivity in fractured tight sandstone,based on the description of the occurrence of natural fractures and geomechanical modeling,the interaction between in-situ stress and natural fractures was determined,and the normal stress and shear stress of each fracture plane were calculated to compare the relative mechanical response of natural fractures across the anticline structure in the field.We then simulated mechanical response of natural fractures under different pore pressure according to Mohr-Coulomb failure criterion,and obtained the correlation between geomechanical response and open-flow rate of gas wells and built the concept of strike-slip rate depending on the theory.At the crest of structure and faulting area,the favorable combination of in-situ stresses and natural fracture strike results in high shear-to-normal stress ratio and higher strike-slip rate and higher production.Reversely,the wells show lower production.And then with the depletion,the dynamic change of mechanical response of natural fractures is also closely related to productivity.Take 3 new wells for example,as pore pressure of reservoir decreases by 10MPa,productivity of 2 Wells decreases since the shear-to-normal stress ratio of 70% natural fractures decreases,their productivity is still lower than adjacent wells even after fracturing.The productivity of the third well maintains high because the shear-to-normal stress ratio of all natural fractures increases which changes the traditional point that the productivity decreases following the pressure dropping.It is revealed that the geomechanical response of natural fractures is a controlling factor of well productivity in this reservoir.It is a new index for reservoir evaluation,and is also an important supplementary information for optimizing well placement and stimulation program in the special condition.

Key words: Kuqa Depression, Natural fractures, Geomechanical response, In-situ stress, Strike-slip rate, Gas well productivity

中图分类号: 

  • TE311
[1]Harstad H,Teufel L W,Lorenz J C.Characterization and Simulation of Naturally Fractured Tight Gas Sandstone Reservoirs[C].Presented at the SPE Annual Technical Conference & Exhibition held in Dallas,U.S.A.,22-25 October,1995.doi:10.2118/30573-MS.
[2]Gale J F W,Reed R M,Holder J.Natural fractures in the Barnett shale and their importance for hydraulic fracture treatments[J].AAPG Bulletin,2007,91:603-622.
[3]Zhang Hui,Qiu Kaibin,Fuller,et al.Geomechanical-evaluation enabled successful stimulation of a HPHT tight gas reservoir in western China[J].SPE Drilling & Completion,2015(12):274-294.
[4]Teufel L W,Rhett W.“Geomechanical Evidence for Shear Failure of Chalk During Production of the Ekofisk Field”[C].SPE 22755.Presented at the SPE 66th Annual Technical Conference and Exhibition,Dallas,Oct.6-9,1991.[ZK)]
[5]Chen H Y,Teufel L W.Reservoir Stress Changes Induced by Production/Injection[C].Presented at the SPE Rocky Mountain Petroleum Technology Conference held in Keystone,Colorado,21-23 May,2001.doi:10.2118/71087-MS.
[6]Zoback M D.Reservoir Geomechanics[M].Cambridge:Cambridge University Press,2007.
[7]Hennings P,Allwardt P,Paul P,et al.Relationship between fractures,fault zones,stress,and reservoir productivity in the Suban Gas Field,Sumatra,Indonesia[J].AAPG Bulletin,2012 96(4):753-772.
[8]Laubach S E,Gale J F W.Obtaining fracture information for low-permeability (tight) gas sandstones from sidewall cores[J].Journal of Petroleum Geology,2006,29(2):147-158.
[9]Tamagawa T,Pollard D D.Fracture permeability d by perturbed stress fields around active faults in a fractured basement reservoir[J].AAPG Bulletin,2008,92:743-764.
[10]Chang Chandong.Effects of Fractures and Faults on In Situ Stress Magnitudes[C].ARMA 14-7053,American Rock Mechanics Association Minneapolis,MN,USA,1-4 June,2014.
[11]Barton C A,Zoback M D,Moos D.Fluid flow along potentially active faults in crystalline rock[J].Geology,1995,23:683-686.
[12]Tao Q,Ehlig-Economides C A,Ghassemi A.Investigation of Stress-Dependent Permeability in Naturally Fractured Reservoirs Using a Fully Coupled Poroelastic Displacement Discontinuity Model[C].Presented at the SPE Annual Technical Conference and Exhibition held in New Orleans,Louisiana,USA,4-7 October,2009.doi:10.2118/124745-MS.
[13]Townend J,Zoback M D.How faulting keeps the crust strong[J].Geology,2000,28(5):399-402.
[14]Wang Zhaoming,Li Yong,Xie Huiwen,et al.UItra Deep Oil and Gas Geological Theory and Exploration Practice in Kuqa foreland Basin[M].Beijing:Petroleum Industry Press,2017.
王招明,李勇,谢会文,等.库车前陆盆地超深油气地质理论与勘探实践[M].北京:石油工业出版社,2017.
[15]Zhang Huiliang,Zhang Ronghu,Yan haijun,et al.Quantitative evaluation methods and applications of tectonic fracture developed sand reservoir:A cretaceous example from Kuqa foreland basin[J].Acta Petrologica Sinica,2012,28(3):827-835.
张惠良,张荣虎,杨海军,等.构造裂缝发育型砂岩储层定量评价方法及应用——以库车前陆盆地白垩系为例[J].岩石学报,2012,28(3):827-835.
[16]Wang Zhaoming.Formation mechanism and enrichment regularities of Kelasu subsalt deep large gasfield in Kuqa Depression,Tarim Basin[J].Natural Gas Geoscience,2014,25(2):153-166.
王招明.塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律[J].天然气地球科学,2014,25(2):153-166.
[17]Jia Chengzao.Tectonic Characteristics and Petroleum Tarim Basin China[M].Beijing:Petroleum Industry Press,1997.
贾承造.中国塔里木盆地构造特征与油气[M].北京:石油工业出版社,1997.
[18]He Dengfa,Zhou Xinyuan,Yang Haijun,et al.Geological structure and its controls on giant oil and gas fields in Kuqa Depression,Tarim Basin:A clue from new shot seismic data[J].Geotectonica et Metallogenia,2009,33(1):19-32.
何登发,周新源,杨海军,等.库车坳陷的地质结构及其对大油气田的控制作用[J].大地构造与成矿学,2009,33(1):19-32.
[19]Neng Yuan,Xie Huiwen,Li Yong,et al.The character of deformation style and its distribution law in the middle part of Kuqa Depression,northern margin of Tarim Basin,NW China[J].Chinese Journal of Geology:Scientia Geologica Sinica,2012,47(3):629-639.
能源,谢会文,李勇,等.塔里木盆地库车坳陷中部构造变形样式及分布特征[J].地质科学,2012,47(3):629-639.
[20]Zhang Fuxiang,Zhang Hui.Geomechanical Mechanism of Hydraulic Fracturing and Fracability of Natural Fractured Tight Sandstone Reservoir in Keshen Gasfield in Tarim Basin[C].Presented at the SPE Abu Dhabi International Petroleum Exhibition and Conference,2015,SPE-177457-MS.doi:10.2118/177457-MS.
[21]Jaeger J C,Cook N G W.Fundamentals of Rock Mechanics[M].First Edition.London:Chapman and Hall,1979.

[1] 包建平, 朱翠山, 申旭. 金刚烷类化合物与库车坳陷克拉2构造凝析油的形成机理研究[J]. 天然气地球科学, 2018, 29(9): 1217-1230.
[2] 张荣虎,王珂,王俊鹏,孙雄伟,李君,杨学君,周露. 塔里木盆地库车坳陷克深构造带克深8区块裂缝性低孔砂岩储层地质模型[J]. 天然气地球科学, 2018, 29(9): 1264-1273.
[3] 杨海军,张荣虎,杨宪彰,王珂,王俊鹏,唐雁刚,周露. 超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J]. 天然气地球科学, 2018, 29(7): 942-950.
[4] 赵力彬,张同辉,杨学君,郭小波,饶华文. 塔里木盆地库车坳陷克深区块深层致密砂岩气藏气水分布特征与成因机理[J]. 天然气地球科学, 2018, 29(4): 500-509.
[5] 高文杰,李贤庆,张光武,魏强,张吉振,祁帅,陈金明. 塔里木盆地库车坳陷克拉苏构造带深层致密砂岩气藏储层致密化与成藏关系[J]. 天然气地球科学, 2018, 29(2): 226-235.
[6] 李国欣, 易士威, 林世国, 高阳, 李明鹏, 李德江, 王昌勇. 塔里木盆地库车坳陷东部地区下侏罗统储层特征及其主控因素[J]. 天然气地球科学, 2018, 29(10): 1506-1517.
[7] 韩秀玲,杨贤友,熊春明,石阳,高莹,张福祥,连胜江,李向东,王萌,李福涛. 超深裂缝性厚层改造效果影响因素分析与高效改造对策[J]. 天然气地球科学, 2017, 28(8): 1280-1286.
[8] 纪红,黄光辉,成定树,许姗姗. 塔里木盆地库车坳陷大宛齐—大北地区原油轻烃特征及地球化学意义[J]. 天然气地球科学, 2017, 28(6): 965-974.
[9] 赵力彬,杨学君,昌伦杰,张同辉,孙雄伟,冯建伟. 塔里木盆地库车坳陷克深地区白垩系低孔砂岩储层“三重介质特征”[J]. 天然气地球科学, 2017, 28(2): 209-218.
[10] 何岩峰,成景烨,窦祥骥,王相,唐波. 页岩天然裂缝网络渗透率模型研究[J]. 天然气地球科学, 2017, 28(2): 280-286.
[11] 刘春,张荣虎,张惠良,王波,黄伟. 塔里木盆地库车前陆冲断带不同构造样式裂缝发育规律:证据来自野外构造裂缝露头观测[J]. 天然气地球科学, 2017, 28(1): 52-61.
[12] 王玉满,李新景,董大忠,张晨晨,王淑芳,黄金亮,管全中. 海相页岩裂缝孔隙发育机制及地质意义[J]. 天然气地球科学, 2016, 27(9): 1602-1610.
[13] 李德江,易士威,冉启贵,缪卫东,宋海敬,白晶玉. 塔里木盆地库车坳陷东秋里塔格构造样式及勘探前景[J]. 天然气地球科学, 2016, 27(4): 584-590.
[14] 付海峰,刘云志,梁天成,翁定为,卢拥军,修乃岭. 四川省宜宾地区龙马溪组页岩水力裂缝形态实验研究[J]. 天然气地球科学, 2016, 27(12): 2231-2236.
[15] 李勇明,廖毅,赵金洲,王琰琛,彭瑀. 基于双尺度等效渗流模型的复杂碳酸盐岩蚓孔扩展形态研究[J]. 天然气地球科学, 2016, 27(1): 121-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 江厚顺,白彦华,冉建立 . 水平井产能预测及射孔参数优选系统研究[J]. 天然气地球科学, 2007, 18(6): 891 -893 .
[2] 宋琦, 王树立, 陈燕, 郑志, 谢磊. 天然气水合物新型动力学模型与实验研究[J]. 天然气地球科学, 2010, 21(5): 868 -874 .
[3] 韩中喜,李剑,严启团,垢艳侠,王淑英,葛守国,王春怡. 天然气汞含量作为煤型气和油型气判识指标的探讨[J]. 天然气地球科学, 0, (): 129 -133 .
[4] 白振华,姜振学,宋岩,赵孟军,方世虎,张健. 准噶尔盆地南部霍玛吐构造带古近系紫泥泉子组储层发育特征与控制因素分析[J]. 天然气地球科学, 2013, 24(2): 273 -281 .
[5] 戴金星, 倪云燕, 黄士鹏, 廖凤蓉, 于聪, 龚德瑜, 吴伟. 煤成气研究对中国天然气工业发展的重要意义[J]. 天然气地球科学, 2014, 25(1): 1 -22 .
[6] 杨池银,于学敏,刘 岩,滑双君,姜文亚,邹磊落. 渤海湾盆地黄骅坳陷中南部煤系发育区煤成气形成条件及勘探前景[J]. 天然气地球科学, 2014, 25(1): 23 -32 .
[7] 《天然气地球科学》期封面及目次. 《天然气地球科学》2014-01期封面及目次[J]. 天然气地球科学, 2014, 25(1): 0 -2 .
[8] 徐宏杰,胡宝林,刘会虎,郑建斌,张文永,郑凯歌. 淮南煤田下二叠统山西组煤系页岩气储层特征及物性成因[J]. 天然气地球科学, 2015, 26(6): 1200 -1210 .
[9] 戴金星,倪云燕,黄士鹏,龚德瑜,刘丹,冯子齐,彭威龙,韩文学. 次生型负碳同位素系列成因[J]. 天然气地球科学, 2016, 27(1): 1 -7 .
[10] 王鹏,刘四兵,沈忠民,黄飞,罗自力,陈飞. 四川盆地上三叠统气藏成藏年代及差异[J]. 天然气地球科学, 2016, 27(1): 50 -59 .