天然气地球科学

• 天然气开发 • 上一篇    下一篇

考虑页岩缝宽动态变化的微裂缝气体质量传输模型

曾凡辉1,彭凡1,郭建春1,钟华2,向建华2   

  1. 1.西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都  610500;
    2.中国石油天然气股份有限公司西南油气田分公司,四川 成都  610017
  • 收稿日期:2018-07-08 修回日期:2018-10-15 出版日期:2019-02-10
  • 作者简介:曾凡辉(1980-),男,四川成都人,副教授,博士,主要从事油气藏开采理论和现场应用研究.E-mail:zengfanhui023024@126.com.
  • 基金资助:
    国家自然科学基金(编号:51504203;51525404;51374178);国家科技重大专项(编号:2017ZX05037-004)联合资助.

The gas mass transport model considering the dynamic change of micro-fracture width in shale

Zeng Fan-hui1,Peng Fan1,Guo Jian-chun1,Zhong Hua2,Xiang Jian-hua2   

  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China; 2.PetroChina Southwest Oil and Gas Field Branch Company,Chengdu 610017,China
  • Received:2018-07-08 Revised:2018-10-15 Online:2019-02-10

摘要: 页岩气藏普遍发育有微裂缝,降压生产时应力敏感引起的微裂缝宽度变化将会显著影响页岩气的质量传输。综合考虑页岩气体在微裂缝中传输时的滑脱效应、克努森扩散和表面扩散等影响因素,运用弹塑性力学、解吸附理论,建立了考虑页岩微裂缝缝宽动态变化的气体质量传输模型,并应用分子模拟验证了模型的可靠性。在此基础上,研究了页岩储层微裂缝中气体质量传输规律和不同传输机理对气体质量传输的贡献。结果表明:①该模型能够很好地反映微裂缝中共存的连续流动、滑脱流动以及克努森流动等多种流态。②地层压力大于3.4MPa时,缝宽变化导致气体传输能力下降,下降后的传输能力最小仅为未考虑缝宽变化时的0.45倍;地层压力小于3.4MPa时,缝宽变化使气体传输能力增大,增大后的传输能力最大为未考虑缝宽变化时的4.5倍。③气体质量传输能力与裂缝压缩性呈负相关,而与岩石杨氏模量、泊松比呈正相关;地层压力小于4MPa时,气体质量传输能力与气体解吸附性呈正相关;地层压力大于4MPa时,不同解吸附性对质量传输的影响几乎一致。④表面扩散只有在纳米级别的微裂缝和低地层压力下才会对气体的质量传输产生较大影响。当表面扩散作用对气体传输贡献较小时,滑脱流动和克努森流动对质量传输的贡献呈现“此消彼长”的趋势;当表面扩散所占比重较大时,随着其比重的降低,滑脱流动和克努森流动对质量传输的贡献将先同时增加,然后“此消彼长”。

关键词: 页岩气, 微裂缝, 动态缝宽, 气体质量传输, 影响因素

Abstract: Shale gas reservoirs generally develop micro-fractures.During pressure-relief production,the change of micro-fracture width caused by stress-sensitivity is an important factor affecting shale gas transport.Based on the cubic grid model,the slippage flow model,the Knudsen diffusion model and the surface diffusion model,a gas mass transporting model considering the dynamic change of shale micro-fracture width is established by using elastic-plastic mechanics and desorption theory of adsorption gas.Meanwhile,the molecular simulation results verify the reliability of the model.On this basis,considering the dynamic change of micro-fracture width,the law of shale gas mass transport is studied,and the contribution of different transporting mechanisms to the total gas transport is discussed.The results show that:(1)Considering the change of micro-fracture width caused by stress-sensitivity,the model established in this paper can well reflect these coexisting flows including continuous flow,slippage flow,Knudsen flow and surface diffusion flow.(2)Compared with original transporting capacity without considering the change of micro-fracture width,when the formation pressure is higher than 3.4MPa,the change of micro-fracturewidth decreases the gas transporting capacity,and the minimum transporting capacity is only 0.45 times of the original transporting capacity,while the formation pressure is less than 3.4MPa,the change of micro-fracture width increases the gas transporting capacity,the maximum transporting capacity is 4.5 times of the original transporting capacity.(3)The gas mass transport is negatively correlated with the compressibility of micro-fracture and positive correlation with the Young’s modulus and Poisson’s ratio of the rock.When the formation pressure is less than 4MPa,the gas mass transport is positively correlated with the gas desorption.When the formation pressure is greater than 4MPa,the effect of different gas adsorption on gas mass transport is almost the same.(4)Considering the change of the micro-fracture width,only when the micro-fracture is nano-scale and the formation pressure is relatively low,the surface diffusion can exert a great influence on the gas transport.When the contribution of surface diffusion to total gas transport is small,the contributions of slippage and Knudsen flow respectively to total gas transport show a tendency of “shifting from one another”.When the proportion of surface diffusion is larger,with the decrease of contribution of surface diffusion,the contributions of slippage and Knudsen flow respectively to total gas transport will increase together in the first stage and then “shifting from one another” in the second stage.

Key words: Shale gas, Micro-fracture, Dynamic micro-fracture width, Gas mass transport, Influencing factors

中图分类号: 

  • TE341
[1]Javadpour F.Nanopores and apparent permeability of gas flow in mudrocks(shales and siltstone)[J].Journal of Canadian Petroleum Technology,2009,48(8):16-21.
[2]Singh H,Javadpour F,Ettehadtavakkol A,et al.Nonempirical apparent permeability of shale[J].SPE Reservoir Evaluation & Engineering,2013,17(3):414-424.
[3]Shahri M R,Aguilera R,Kantzas A.A new unified diffusion-viscous flow model based on pore level studies of tight gas formations[J].SPE Journal,2012,18(1):38-49.
[4]Roy S,Raju R,Chuang H F,et al.Modeling gas flow through microchannels and nanopores[J].Journal of Applied Physics,2003,93(8):4870-4879.
[5]Shi J,Zhang L,Li Y,et al.Diffusion and Flow Mechanisms of Shale Gas Through Matrix Pores and Gas Production Forecasting[C]//SPE Unconventional Resources Conference.Calgary,Alberta,Canada:Society of Petroleum Engineers,2013:5-7.
[6]Rahmanian M R,Solano N,Aguilera R.Storage and Output Flow From Shale and Tight Gas Reservoirs[C]//SPE Western Regional Meeting.Anaheim,California:Society of Petroleum Engineers,2010:27-29.
[7]Chalmers G R,Bustin R M,Power I M.Characterization of gas shale pore systems by porosimetry,pycnometry,surface area,and field emission scanning electron microscopy/transmission electron microscopy image analyses:Examples from the Barnett,Woodford,Haynesville,Marcellus,and Doig unit[J].AAPG Bulletin,2012,96(6):1099-1119.
[8]Chen J,Xiao X.Evolution of nanoporosity in organic-rich shales during thermal maturation[J].Fuel,2014,129(4):173-181.
[9]Wu Keliu,Li Xiangfang,Chen Zhangxing,et al.Gas transport behavior through micro fractures of shale and tight gas reservoirs[J].Chinese Journal of Theoretical and Applied Mechanics,2015,47(6):955-964.
吴克柳,李相方,陈掌星,等.页岩气和致密砂岩气藏微裂缝气体传输特性[J].力学学报,2015,47(6):955-964.
[10]Wu Keliu,Chen Zhangxing.Review of gas transport in nanopores in shale gas reservoirs[J].Petroleum Science Bulletin,2016,1(1):91-127.
吴克柳,陈掌星.页岩气纳米孔气体传输综述[J].石油科学通报,2016,1(1):91-127.
[11]Dong J J,Hsu J Y,Wu W J,et al.Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A[J].International Journal of Rock Mechanics & Mining Sciences,2010,47(7):1141-1157.
[12]Yao Yuping,Zhou Shining.The mechanical property of coal containing gas[J].Journal of China University of Mining & Technology,1988,1(1):4-10.
姚宇平,周世宁.含瓦斯煤的力学性质 [J].中国矿业学院学报,1988,1(1):4-10.
[13]Wu K,Li X,Wang C,et al.Model for surface diffusion of adsorbed gas in nanopores of shale gas reservoirs[J].Industrial & Engineering Chemistry Research,2015,54(12):3225-3236.
[14]Javadpour F,Fisher D,Unsworth M.Nanoscale gas flow in shale gas sediments[J].Journal of Canadian Petroleum Technology,2007,46(10):55-61.
[15]Cui X,Bustin A M M,Bustin R M.Measurements of gas permeability and diffusivity of tight reservoir rocks:different approaches and their applications[J].Geofluids,2010,9(3):208-223.
[16]Kang S M,Fathi E,Ambrose R J,et al.Carbon dioxide storage capacity of organic-rich shales[J].SPE Journal,2010,16(4):842-855.
[17]Fathi E,Akkutlu I Y.Multi-component gas transport and adsorption effects during CO2 injection and enhanced shale gas recovery[J].International Journal of Coal Geology,2014,123(2):52-61.
[18]Darabi H,Ettehad A,Javadpour F,et al.Gas flow in ultra-tight shale strata[J].Journal of Fluid Mechanics,2012,710(12):641-658.
[19]Wu Keliu,Li Xiangfang,Chen Zhangxing.A model for gas transport through nanopores of shale gas reservoirs[J].Acta Petrolei Sinica,2015,36(7):837-848.
吴克柳,李相方,陈掌星.页岩气纳米孔气体传输模型[J].石油学报,2015,36(7):837-848.
[20]Dong C,Pan Z,Ye Z.Dependence of gas shale fracture permeability on effective stress and reservoir pressure:Model match and insights[J].Fuel,2015,139:383-392.
[21]Robertson E P,Christiansen R L.A permeability model for coal and other fractured,sorptive-elastic media[J].SPE Journal,2006,13(3):314-324.
[22]Thompson S L,Owens W R.A survey of flow at low pressures[J].Vacuum,1975,25(4):151-156.
[23]Loeb L B.The Kinetic Theory of Gases[M].2nd ed.New York:McGraw-Hill Co.Inc.,1934.
[24]Karniadakis G,Beskok A,Aluru N.Microflows and Nanoflows:Fundamentals and Simulation[M].New York:Springer Verlag,2005.
[25]Freeman C M,Moridis G J,Blasingame T A.A numerical study of microscale flow behavior in tight gas and shale gas reservoir systems[J].Transport in Porous Media,2011,90(1):253-268.
[26]Sone Y,Hasegawa M.Poiseuille and thermal transpiration flows of a rarefied gas through a rectangular pipe[J].Journal of the Vacuum Society of Japan,1987,30(5):425-428.
[27]Loyalka S K,Hamoodi S A.Poiseuille flow of a rarefied gas in a cylindrical tube:Solution of linearized Boltzmann equation[J].Physics of Fluids A Fluid Dynamics,1989,2(11):2061-2065.
[28]Cercignani C.Theory and application of the Boltzmann equation[J].Physics Today,1977,30(1):66-68.
[29]Williams M M R.Mathematical Methods in Particle Transport Theory[M].London:Wiley-Interscience,Butterworths,1971.
[30]Kogan M N.Rarefied gas dynamics[J].Physics Today,1961,14(9):90-92.
[1] 张磊, 徐兵祥, 辛翠平, 乔向阳, 穆景福, 许阳, 韩长春. 考虑主裂缝的页岩气产能预测模型[J]. 天然气地球科学, 2019, 30(2): 247-256.
[2] 谢维扬, 刘旭宁, 吴建发, , 张鉴, 吴天鹏, 陈满. 页岩气水平井组产量递减特征及动态监测[J]. 天然气地球科学, 2019, 30(2): 257-265.
[3] 孙兵华, 张廷山, . 鄂尔多斯盆地张家湾地区长7页岩油气储集特征及其影响因素[J]. 天然气地球科学, 2019, 30(2): 274-284.
[4] 徐加祥, 丁云宏, 杨立峰, 刘哲, 陈挺. 页岩气储层迂曲微裂缝二维重构及多点起裂分析[J]. 天然气地球科学, 2019, 30(2): 285-294.
[5] 郭旭升. 四川盆地涪陵平桥页岩气田五峰组—龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(1): 1-10.
[6] 姜瑞忠, 原建伟, 崔永正, 张伟, 张福蕾, 张海涛, 毛埝宇. 基于TPHM的页岩气藏多级压裂水平井产能分析[J]. 天然气地球科学, 2019, 30(1): 95-101.
[7] 周尚文, 王红岩, 刘浩, 郭伟, 陈浩. 基于Arps产量递减模型的页岩损失气量计算方法[J]. 天然气地球科学, 2019, 30(1): 102-110.
[8] 许崇祯, 张公社, 殷嘉伟, 纪国法, 李新发. 考虑解吸—吸附的页岩气藏压裂水平井综合渗流模型[J]. 天然气地球科学, 2019, 30(1): 111-118.
[9] 许耀波, 朱玉双, 张培河. 沁水盆地赵庄井田煤层气产出特征及其影响因素[J]. 天然气地球科学, 2019, 30(1): 119-125.
[10] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[11] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[12] 任茜莹,代金友,穆中奇. 气藏采收率影响因素研究与启示——以靖边气田A井区为例[J]. 天然气地球科学, 2018, 29(9): 1376-1382.
[13] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[14] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[15] 朱维耀, 马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 江厚顺,白彦华,冉建立 . 水平井产能预测及射孔参数优选系统研究[J]. 天然气地球科学, 2007, 18(6): 891 -893 .
[2] 戴金星,倪云燕,黄士鹏,龚德瑜,刘丹,冯子齐,彭威龙,韩文学. 次生型负碳同位素系列成因[J]. 天然气地球科学, 2016, 27(1): 1 -7 .
[3] 王鹏,刘四兵,沈忠民,黄飞,罗自力,陈飞. 四川盆地上三叠统气藏成藏年代及差异[J]. 天然气地球科学, 2016, 27(1): 50 -59 .
[4] 韩中喜,李剑,严启团,垢艳侠,王淑英,葛守国,王春怡. 天然气汞含量作为煤型气和油型气判识指标的探讨[J]. 天然气地球科学, 0, (): 129 -133 .
[5] 惠潇,楚美娟. 鄂尔多斯盆地中部延长组长9油层组2种砂体类型特征及成因分析[J]. 天然气地球科学, 2016, 27(1): 81 -91 .
[6] 姚泾利,王程程,陈娟萍,高岗,王飞雁,李晓凤,李佳烨,刘岩. 鄂尔多斯盆地马家沟组盐下碳酸盐岩烃源岩分布特征[J]. 天然气地球科学, 2016, 27(12): 2115 -2126 .
[7] 魏国齐,王志宏,李剑,杨威,谢增业. 四川盆地震旦系、寒武系烃源岩特征、资源潜力与勘探方向[J]. 天然气地球科学, 2017, 28(1): 1 -13 .
[8] 杨振恒,魏志红,何文斌,范明,俞凌杰,徐二社,钱门辉. 川东南地区五峰组—龙马溪组页岩现场解吸气特征及其意义[J]. 天然气地球科学, 2017, 28(1): 156 -163 .
[9] 鲁新川,安永福,夏维民,胡子见,张顺存,史基安. 准噶尔盆地阜东斜坡区侏罗系三工河组沉积微相特征及对储层的控制[J]. 天然气地球科学, 2017, 28(12): 1810 -1820 .
[10] 杨志冬. 准噶尔盆地红山嘴油田红153井区二叠系夏子街组砂砾岩储层特征及影响因素[J]. 天然气地球科学, 2017, 28(12): 1829 -1838 .