天然气地球科学 ›› 2019, Vol. 30 ›› Issue (10): 1393–1405.doi: 10.11764/j.issn.1672-1926.2019.07.018

• 非常规天然气 •    下一篇

沉积环境对页岩孔隙的控制作用

梁兴1(),陈科洛2(),张廷山2,张朝1,张介辉1,舒红林1   

  1. 1. 中国石油浙江油田公司,浙江 杭州 310023
    2. 西南石油大学地球科学与技术学院,四川 成都 610500
  • 收稿日期:2019-06-17 修回日期:2019-07-28 出版日期:2019-10-10 发布日期:2020-03-23
  • 通讯作者: 陈科洛 E-mail:liangx85@petrochina.com.cn.;490486153@qq.com.
  • 作者简介:梁兴(1965-),男,广西北流人,教授级高级工程师,博士,主要从事页岩气、煤层气、高凝油和常规气综合评价研究及勘探开发管理工作. E-mail:liangx85@petrochina.com.cn.
  • 基金资助:
    国家自然科学基金(41772150);国家科技重大专项(2017ZX05063002-009);四川省科技计划项目(18ZDYF0884)

The controlling factors of depositional environment to pores of the shales:Case study of Wufeng Formation-Lower Longmaxi Formation in Dianqianbei area

Xing Liang1(),Ke-luo Chen2(),Ting-shan Zhang2,Zhao Zhang1,Jie-hui Zhang1,Hong-lin Shu1   

  1. 1. PetroChina Zhejiang Oilfield Company, Hangzhou 310023, China
    2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China
  • Received:2019-06-17 Revised:2019-07-28 Online:2019-10-10 Published:2020-03-23
  • Contact: Ke-luo Chen E-mail:liangx85@petrochina.com.cn.;490486153@qq.com.

摘要:

基于元素地球化学示踪、扫描电镜和低温氮气吸附实验,对滇黔北地区五峰组下段、观音桥段和龙马溪组下段3个层位沉积环境和孔隙特征进行分析,并进一步探讨不同沉积环境对页岩孔隙的控制作用。V/(V+Ni)、V/Cr、Ni/Co、U/Th、生源Ba含量、Mn/Fe、Sr/Ba指标指示:五峰组下段和龙马溪组下段沉积期处于厌氧条件、古生产力较高、古水深较深;观音桥段沉积期处于富氧环境、古生产力较低、古水深较浅。扫描电镜分析发现:五峰组下段和龙马溪组下段孔隙类型以黏土矿物层间孔和有机质孔为主,观音桥段孔隙类型以原生粒间孔和粒间溶孔为主。低温氮气吸附实验指示:五峰组下段和龙马溪组下段孔隙比表面积较大,孔体积和平均孔径较小,几何形态主要为槽状孔和微孔;观音桥段孔隙比表面积较小,孔体积和平均孔径较大,几何形态主要为墨水瓶孔。五峰组下段和龙马溪组下段沉积期厌氧环境和较高的生产力为有机质孔的发育提供了有利条件,而伊利石和伊/蒙混层的层状结构是黏土矿物层间孔发育的主要因素。观音桥段矿物颗粒的大小混杂堆积和后期的溶蚀改造分别形成了原生粒间孔和粒间溶孔,同时也是二者与墨水瓶孔具有良好对应关系的原因。

关键词: 页岩, 滇黔北地区, 五峰组—龙马溪组下段, 沉积环境, 孔隙, 控制作用

Abstract:

Based on the method of elements geochemical tracing, SEM analysis and nitrogen adsorption experiment at low temperature, depositional environments and pore characters of Lower Wufeng Formation, Guanyinqiao member and Lower Longmaxi Formtion are analyzed and the controlling effects of different depositional environments on pores are further discussed. Indexes of V/(V+Ni), V/Cr, Ni/Co, U/Th, source Ba content, Mn/Fe and Sr/Ba indicate that, sedimentary stage of Lower Wufeng Formation and Lower Longmaxi Formation are in an anaerobic condition, relatively high in productivity and deep in sea depth. While sedimentary stage of Guanyinqiao member is in an oxygen rich condition, relatively low in productivity and shallow in depth. According to SEM analysis, we find the pore types of Lower Wufeng Formation and Lower Longmaxi Formation are mainly pores in clay mineral layers and organic pores, while for Guanyinqiao member, pore types are mainly original intergranular pores and dissolved pores in particles. Nitrogen adsorption experiment at low temperature indicates pores of Lower Wufeng Formation and Lower Longmaxi Formation have relatively big specific area, but small pore volume and average diameter, and are dominated by flaky and micro pores. Pores of Guanyinqiao member have relatively small specific area, but big pore volume and average diameter, and are dominated by ink bottle pores. Anaerobic condition and relatively high in productivity are essential for the formation of organic pores, and layered structure of illite and illite mixed layers are the main factors for pores in clay mineral layers to be formed. Grain particles mixed accumulation and later dissolution of Guanyinqiao member form original intergranular pores and dissolved pores in particles, meanwhile, they are also the reason why the two pores match ink bottle pores.

Key words: Shale, Dianqianbei area, Wufeng Formation-Lower Longmaxi Formation, Depositional environment, Pore, Controlling effect

中图分类号: 

  • TE122.2

图1

研究区地理位置(据舒兵等[12],2016)"

图2

Y8井五峰组—龙马溪组下段生物化石地层延限"

表1

古氧相微量元素判别指标(据张春明等[9],2012)"

判别指标 缺氧环境 富氧环境
厌氧 贫氧
水体溶氧量/(mL/L) <0.1 0.1~1 >1
古地理 低能、滞留、局限 上升流区 高能、循环
V/(V+Ni) >0.50 0.45~0.60 <0.45
V/Cr >4.25 2.00~4.25 <2.00
Ni/Co >7.00 5.00~7.00 <5.00
U/Th >1.25 0.75~1.25 <0.75

图3

Y9井五峰组—龙马溪组下段氧化还原指标分布(据陈科洛等[23],2018)"

表2

五峰组—龙马溪组下段古氧相判别指标"

井号 层位 微量元素指标
V/(×10-6 Ni/(×10-6 Cr/(×10-6 Co/(×10-6 U/(×10-6 Th/(×10-6 V/(V+Ni) V/Cr Ni/Co U/Th
Y6 龙马溪组下段 110.5~190.4 50.2~100.9 34.2~57,2 7.5~15.7 20.3~50.9 9.8~22.4 0.58~0.66 3.5~6.8 6.56~10.42 1.72~2.60
观音桥段 130.2~180.2 192.3~213.5 71.2~104.3 48.2~57.6 9.8~21.7 27.2~36.6 0.39~0.43 1.5~1.7 3.83~3.94 0.41~0.60
五峰组下段 153.2~260.1 85.3~140.2 19.8~67.8 5.3~19.3 16.0~27.4 9.3~21.3 0.59~0.67 4.6~6.2 6.23~9.96 1.27~1.85
Y8 龙马溪组下段 103.2~210.8 81.3~135.6 30.3~52.4 7.3~15.3 12.3~45.2 6.3~15.2 0.55~0.72 4.3~6.7 6.43~9.92 1.42~2.45
观音桥段 110.1~170.2 176.3~216.6 90.3~113.5 47.2~60.5 10.3~20.1 25.7~33.6 0.38~0.44 1.4~1.8 3.77~3.93 0.43~0.62
五峰组下段 160.9~280.2 92.5~131.3 20.8~75.3 4.2~18.4 25.3~30.3 7.2~18.0 0.58~0.70 5.2~6.1 6.21~10.32 1.33~1.88
Y9 龙马溪组下段 91.9~214.5 29.2~132.7 23.2~69.4 4.4~18.0 14.3~36.3 8.4~19.2 0.56~0.76 2.3~7.1 6.64~10.38 1.34~2.41
观音桥段 123.6~166.5 196.6~226.5 65.4~98.3 49.6~58.2 12.6~18.9 24.3~32.6 0.39~0.42 1.7~1.9 3.89~3.96 0.52~0.58
五峰组下段 146.8~251.5 91.5~136.3 27.4~61.6 8.6~22.1 14.7~25.9 8.3~17.4 0.53~0.67 4.2~5.4 6.17~10.64 1.22~1.77

表3

五峰组—龙马溪组下段古生产力、古水深和水体盐度的判别指标"

井名 层位 判别指标
Sr/(×10-6 Ba/(×10-6 Mn/(×10-6 Fe/% Sr/Ba Mn/Fe
Y6 龙马溪组下段 124.4~246.1 637.2~1 657.8 229.5~468.7 2.5~5.1 0.11~0.33 0.005~0.013
观音桥段 721.3~920.3 123.9~350.0 52.5~156.2 8.2~12.5 2.9~4.6 0.000 4~0.000 8
五峰组下段 137.2~247.6 383.6~926.3 352.5~524.7 2.1~4.2 0.17~0.43 0.006~0.015
Y8 龙马溪组下段 100.2~210.9 567.2~1 203.5 350.1~636.5 3.6~5.7 0.13~0.21 0.006~0.012
观音桥段 520.4~725.1 170.2~280.7 62.2~190.3 7.1~10.5 2.3~3.2 0.000 5~0.000 9
五峰组下段 67.2~178.2 456.2~1 130.8 310.5~623.5 3.2~5.2 0.08~0.27 0.006~0.011
Y9 龙马溪组下段 56.2~135.9 620.6~1 437.9 258.2~567.2 2.4~6.2 0.09~0.18 0.005~0.020
观音桥段 604.5~920.3 95.5~269.2 80.6~140.6 9.2~10.4 3.4~6.3 0.000 8~0.001 5
五峰组下段 117.5~193.4 356.6~896.2 285.3~569.3 2.6~5.3 0.20~0.54 0.006~0.022
C1 龙马溪组下段 145.1~280.2 852~1 623.5 305.6~514.6 1.2~4.6 0.06~0.18 0.007~0.016
观音桥段 820.1~1 023.6 130.3~257.5 89.3~122.3 7.8~8.9 3.9~5.2 0.000 6~0.001
五峰组下段 150.2~297.6 460.1~1 045.7 298.2~510.7 1.5~3.7 0.13~0.34 0.004~0.014
Z4 龙马溪组下段 82.7~230.4 620.4~1 436.1 413.4~672.3 1.8~4.7 0.07~0.25 0.004~0.015
观音桥段 738.2~1 047.2 150.6~224.8 40.2~94.3 7.9~8.4 3.8~4.7 0.000 3~0.000 8
五峰组下段 82.5~205.7 470.2~994.5 396.7~591.2 3.1~5.6 0.9~0.41 0.003~0.011

图4

Y9井古生产力和古水深判别指标的纵向分布特征"

图5

滇黔北地区五峰组—龙马溪组下段扫描电镜照片 (a)Y8井,2 491.64m,龙马溪组下段,黏土矿物层间孔;(b)Y6井,1 410.45m,龙马溪组下段,有机质孔;(c)C1井,1 809.3m,观音桥段,粒间溶孔;(d)Y6井,1 433.5m,观音桥段,原生粒间孔;(e)Z4井,2 057.43m,五峰组下段,黄铁矿晶间孔;(f)Y8井,2 517.56m,五峰组下段,有机质孔和黏土矿物层间孔"

表4

五峰组—龙马溪组下段孔隙结构表征参数"

井号 层位 孔隙结构表征参数
比表面积(S)/(m2/g) 孔体积(V)/(cm3/g) 平均孔径(D)/nm
Y6 龙马溪组上段 4.4~15.0 0.006~0.017 2.1~2.6
观音桥段 1.2~2.4 0.02~0.035 8.4~20.7
五峰组下段 8.2~23.2 0.004~0.013 2.5~3.0
Y8 龙马溪组上段 11.2~18.8 0.013~0.024 3.7~3.9
观音桥段 0.8~3.4 0.022~0.029 5.2~14.3
五峰组下段 5.2~19.2 0.005~0.022 3.2~3.8
Y9 龙马溪组上段 6.2~19.9 0.007~0.018 2.6~2.8
观音桥段 1.4~3.9 0.015~0.027 7.2~19.2
五峰组下段 8.8~19.3 0.005~0.015 2.3~3.5

图6

五峰组—龙马溪组下段页岩典型样品孔径分布曲线"

图7

滞后环类型与对应的孔隙结构特征(据罗超等[30],2014)"

图8

五峰组—龙马溪组下段页岩典型样品的氮气等温吸附线"

表5

沉积环境与孔隙特征及二者对应关系"

环境与孔隙 分析指标 层位与对应关系
五峰组下段、龙马溪组下段 观音桥段
沉积环境 古氧相 厌氧 富氧
古生产力 较高 较低
古水深 较深 较浅
孔隙特征 孔隙类型 黏土矿物层间孔、有机质孔 原生粒间孔、粒间溶孔
孔隙结构 槽状孔、微孔 墨水瓶孔
1 Jia Chengzao , Zheng Min , Zhang Yongfeng . Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration & Development, 2012, 39(2):129-136.
贾承造, 郑民, 张永峰 . 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2):129-136.
2 Zou Caineng , Zhang Guosheng , Yang Zhi , et al . Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology[J]. Petroleum Exploration & Development, 2013, 40(4):385-399.
邹才能, 张国生, 杨智,等 . 非常规油气概念、特征、潜力及技术——兼论非常规油气地质学[J]. 石油勘探与开发, 2013, 40(4):385-399.
3 Zhai Gangyi , Wang Yufang , Bao Shujing , et al . Major factors controlling the accumulation and high productivity of marine shale gas and prospect forecast in southern China[J]. Earth Science, 2017, 42(7): 1057-1068.
翟刚毅, 王玉芳, 包书景, 等 . 我国南方海相页岩气富集高产主控因素及前景预测[J]. 地球科学, 2017, 42(7):1057-1068.
4 Wang Shiqian . Shale gas exploitation: Status, issues and prospects[J]. Natural Gas Industry, 2017, 37(6): 115-130.
王世谦 . 页岩气资源开采现状、问题与前景[J]. 天然气工业, 2017, 37(6): 115-130.
5 Dong Dazhong , Gao Shikui , Huang Jinliang , et al . A discussion on the shale gas exploration & development prospect in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12): 1-15.
董大忠,高世葵,黄金亮,等 . 论四川盆地页岩气资源勘探开发前景[J]. 天然气工业,2014,34(12):1-15.
6 Zhang Tingshan , Yang Yang , Gong Qisen , et al . Characteristics and mechanisms of the micro-pores in the Early Palaeozoic marine shale, Southern Sichuan Basin[J]. Acta Geologica Sinica, 2014, 88(9): 1728-1740.
张廷山,杨洋,龚其森,等 . 四川盆地南部早古生代海相页岩微观孔隙特征及发育控制因素[J]. 地质学报,2014,88(9):1728-1740.
7 Li Yanfang , Shao Deyong , Lv Haigang , et al . A relationship between elemental geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(12): 1470-1483.
李艳芳,邵德勇,吕海刚,等 . 四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J]. 石油学报,2015,36(12):1470-1483.
8 Liang Chao , Jiang Zaixing , Yang Yiting , et al . Shale lithofacies and reservoir space of the Wufeng-Longmaxi Formation, Sichuan Basin, China[J]. Petroleum Exploration and Development, 2012, 39(6): 691-698.
梁超, 姜在兴, 杨镱婷,等 . 四川盆地五峰组—龙马溪组页岩岩相及储集空间特征[J]. 石油勘探与开发, 2012, 39(6):691-698.
9 Zhang Chunming , Zhang Weisheng , Guo Yinghai . Sedimentary environment and its effect on hydrocarbon source rocks of Longmaxi Formation in southeast Sichuan and northern Guizhou[J]. Earth Science Frontiers, 2012, 19(1): 136-145.
张春明,张维生,郭英海 . 川东南—黔北地区龙马溪组沉积环境及对烃源岩的影响[J]. 地学前缘,2012,19(1):136-145.
10 Jin Zhijun , Hu Zongquan , Gao Bo , et al . Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10.
金之钧,胡宗全,高波,等 . 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘,2016,23(1):1-10.
11 Xu Zhengyu , Liang Xing , Wang Weixu , et al . Controlling factors for shale gas sweet spots distribution in the Upper Yangtze region: A case study of the Upper Ordovician Wufeng Fm-Lower Silurian Longmaxi Formation, Sichuan Basin[J]. Natural Gas Industry, 2016, 36(9): 35-43.
徐政语,梁兴,王维旭,等 . 上扬子区页岩气甜点分布控制因素探讨:以上奥陶统五峰组—下志留统龙马溪组为例[J]. 天然气工业,2016,36(9):35-43.
12 Shu Bing , Zhang Tingshan , Liang Xing , et al . Characteristics of the Lower Silurian Longmaxi gas-bearing shale reservoir in Dianqianbei Depression and adjacent area[J]. Marine Origin Petroleum Geology, 2016, 21(3): 22-28.
舒兵,张廷山,梁兴,等 . 滇黔北坳陷及邻区下志留统龙马溪组页岩气储层特征[J]. 海相油气地质,2016,21(3):22-28.
13 Chuanlong Mou , Zhou Kenken , Liang Wei , et al . Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze Region and petroleum and gas exploration[J]. Acta Geologica Sinica, 2011, 85(4): 526-532.
牟传龙,周恳恳,梁薇,等 . 中上扬子地区早古生代烃源岩沉积环境与油气勘探[J]. 地质学报,2011,85(4):526-532.
14 Zhao Jianhua , Jin Zhijun , Jin Zhenkui , et al . Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(5): 572-586.
赵建华,金之钧,金振奎,等 . 四川盆地五峰组—龙马溪组页岩岩相类型与沉积环境[J]. 石油学报,2016,37(5):572-586.
15 Chen Xu , Rong Jiayu , Mitchell, et al . Late Ordovician to earliest Silurian graptolite and brachiopod biozonation from the Yangtze region, South China, with a global correlation[J]. Geological Magazine, 2000,137(6): 623-650.
16 Chen Xu , Fan Junxuan , Zhang Yuandong , et al . Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze platform[J]. Journal of Stratigraphy, 2015, 39(4): 351-358.
陈旭,樊隽轩,张元动,等 . 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J]. 地层学杂志,2015,39(4):351-358.
17 Li Shuangjian , Xiao Kaihua , Yujin Wo , et al . Developmental controlling factors of Upper Ordovician-Lower Silurian high quality source rocks in marine sequence, South China[J]. Acta Sedimentologica Sinica, 2008, 26(5): 872-880.
李双建,肖开华,沃玉进,等 . 南方海相上奥陶统—下志留统优质烃源岩发育的控制因素[J]. 沉积学报,2008,26(5):872-880.
18 Chen Hui , Xie Xinong , Li Hongjing , et al . Evaluation of the Permian marine hydrocarbon source rocks at Shangsi section in Sichuan Province using multi-proxies of paleoproductivity and paleoredox[J]. Journal of Palaeogeography, 2010, 12(3):324-333.
陈慧, 解习农, 李红敬,等 . 利用古氧相和古生产力替代指标评价四川上寺剖面二叠系海相烃源岩[J]. 古地理学报, 2010, 12(3):324-333.
19 Calvert S E , Pedersen T F . Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record[J]. Marine Geology, 1993, 113(1/2): 67-88.
20 Algeo T J , Maynard J B . Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318.
21 Jones B , Manning D A C . Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1-4):111-129.
22 Zheng Yiding , Lei Yuhong , Zhang Liqiang , et al . Characteristics of element geochemistry and paleo sedimentary environment evolution of Zhangjiatan shale in the southeast of ordos basin and its geological significance for oil and gas[J]. Natural Gas Geoscience, 2015, 26(7):1395-1404.
郑一丁, 雷裕红, 张立强,等 . 鄂尔多斯盆地东南部张家滩页岩元素地球化学、古沉积环境演化特征及油气地质意义[J]. 天然气地球科学, 2015, 26(7):1395-1404.
23 Chen Keluo , Zhang Tingshan , Liang Xin , et al . Analysis of shale lithofacies and sedimentary environment on Wufeng Formation-Lower Longmaxi Formation in Dianqianbei Depression[J]. Acta Sedimentologica Sinica, 2018, 36(4): 743-755.
陈科洛, 张廷山, 梁兴,等 . 滇黔北坳陷五峰组—龙马溪组下段页岩岩相与沉积环境[J]. 沉积学报, 2018, 36(4):743-755.
24 Wang Yuanchong , Liang Wei , Chuanlong Mou , et al . The sedimentary response to Gondwana glaciation in Hirnantian(Ordovician) of the Eastern Chongqing and the Northern Guizhou Region,South China[J]. Acta Sedimentologica Sinica, 2015, 33(2):232-241.
王远翀, 梁薇, 牟传龙,等 . 渝东南—黔北地区赫南特期冰川事件的沉积响应[J]. 沉积学报, 2015, 33(2):232-241.
25 Wan Xiaoqiao , Liu Wencan , Li Guobiao , et al . Cretaceous black shale and dissolved oxygen content: A case study in southern Tibet[J]. Chinese Geology, 2003, 30(1): 36-47.
万晓樵,刘文灿,李国彪,等 .白垩纪黑色页岩与海水含氧量变化——以西藏南部为例[J].中国地质,2003,30(1): 36-47.
26 Mazumdar A , Banerjee D M , Schidlowski M , et al . Rare earth elements and stable isotope geochemistry of Early Cambrian chert-phosphorite assemblages from the Lower Tal Formation of the Krol Belt (Lesser Himalaya, India) [J].Chemical Geology, 1999, 156(1-4): 275-297.
27 Xie Jianlei , Zhao Baocheng , Zhan Qing , et al . Review of geochemical applications for paleoenvironmental and paleoecological analyses[J]. Shanghai Land & Resources, 2015, 36(3):64-70.
谢建磊, 赵宝成, 战庆, 等 . 元素地球化学在古环境和古生态研究中的应用综述[J]. 上海国土资源, 2015, 36(3):64-70.
28 Yang Feng , Ning Zhengfu , Zhang Shidong , et al . Characterization of pore structures in shales through nitrogen adsorption experiment[J]. Natural Gas Industry, 2013, 33(4): 135-140.
杨峰, 宁正福, 张世栋, 等 . 基于氮气吸附实验的页岩孔隙结构表征[J]. 天然气工业, 2013, 33(4): 135-140.
29 State General Administration of the People’s Republic of China for Quality Supervision and Inspection and Quarantine. Standardization Administration of the People's Republic of China . Determination of the specific surface area of solids by gas adsorption using the BET method: GB/T19587-2004[S]. Beijing:Standards Press of China, 2005.
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会 . 气体吸附BET法测定固态物质比表面积: GB/T19587-2004[S]. 北京:中国标准出版社,2005.
30 Luo Chao , Liu Shugen , Sun Wei , et al . Pore structure characterization of black shale in the Lower Cambrian Niutitang formation in western Hubei and eastern Chongqing area[J]. Journal of Northeast Petroleum University, 2014, 38(2): 8-17.
罗超, 刘树根, 孙玮, 等 . 鄂西—渝东地区下寒武统牛蹄塘组黑色页岩孔隙结构特征[J]. 东北石油大学学报, 2014, 38(2): 8-17.
31 Wang Chao , Zhang Baiqiao , Shu Zhiguo , et al . Lithofacies types and reservoir characteristics of marine shales of the Wufeng Formation-Longmaxi Formation in Fuling area,the Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(3):485-497.
王超, 张柏桥, 舒志国,等 . 四川盆地涪陵地区五峰组—龙马溪组海相页岩岩相类型及储层特征[J]. 石油与天然气地质, 2018, 39(3):485-497.
32 Wang Yuman , Li Xinjing , Dong Dazhong , et al . Main factors controlling the sedimentation of high-quality shale in Wufeng–Longmaxi Formation, Upper Yangtze region[J]. Natural Gas Industry, 2017, 37(4):9-20.
王玉满, 李新景, 董大忠,等 . 上扬子地区五峰组-龙马溪组优质页岩沉积主控因素[J]. 天然气工业, 2017, 37(4):9-20.
33 Fu Xiaodong , Qin Jianzhong , Tenger, et al . Mineral components of source rocks and their petroleum significance: A case from Paleozoic marine source rocks in the Middle-Upper Yangtze region[J]. Petroleum Exploration and Development, 2011, 38(6): 671-684.
付小东,秦建中,滕格尔,等 . 烃源岩矿物组成特征及油气地质意义——以中上扬子古生界海相优质烃源岩为例[J]. 石油勘探与开发,2011,38(6):671-684.
34 Wang Sen , Feng Qihong , Zha Ming , et al . Molecular dynamics simulation of liquid alkane occurrence state in pores and fractures of shale organic matter[J]. Petroleum Exploration & Development, 2015, 42(6):844-851.
王森, 冯其红, 查明,等 . 页岩有机质孔缝内液态烷烃赋存状态分子动力学模拟[J]. 石油勘探与开发, 2015, 42(6):772-778.
35 Ma Zhongliang , Zheng Lunju , Xu Xuhui , et al . Thermal simulation experiment on the formation and evolution of organic pores in organic-rich shale[J]. Acta Petrolei Sinica, 2017, 38(1):23-30.
马中良, 郑伦举, 徐旭辉,等 . 富有机质页岩有机孔隙形成与演化的热模拟实验[J]. 石油学报, 2017, 38(1):23-30.
[1] 邱振, 邹才能, 王红岩, 董大忠, 卢斌, 陈振宏, 刘德勋, 李贵中, 刘翰林, 何江林, 魏琳. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学, 2020, 31(2): 163-175.
[2] 谭伟, 何胜林, 张海荣, 丁磊, 梁玉楠. 基于自然伽马和电阻率曲线的高温高压气层孔隙度计算方法[J]. 天然气地球科学, 2020, 31(2): 307-316.
[3] 李书琴, 印森林, 高阳, 张方, 李映艳, 彭寿昌. 准噶尔盆地吉木萨尔凹陷芦草沟组混合细粒岩沉积微相[J]. 天然气地球科学, 2020, 31(2): 235-249.
[4] 李二庭, 向宝力, 刘向军, 周妮, 潘长春, 迪丽达尔·肉孜null, 米巨磊. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油偏稠成因分析[J]. 天然气地球科学, 2020, 31(2): 250-257.
[5] 张静非, 赵继展, 陈冬冬, 李树刚, 林海飞. 鄂尔多斯盆地彬长矿区含H2S煤层沉积环境特征及成因分析[J]. 天然气地球科学, 2020, 31(1): 100-109.
[6] 钟秋, 傅雪海, 张苗, 张庆辉, 程维平. 沁水煤田石炭系—二叠系煤系地层页岩气开发潜力评价[J]. 天然气地球科学, 2020, 31(1): 110-121.
[7] 许耀波, 朱玉双. 高阶煤的孔隙结构特征及其对煤层气解吸的影响[J]. 天然气地球科学, 2020, 31(1): 84-92.
[8] 熊亮. 四川盆地及周缘下寒武统富有机质页岩孔隙发育特征[J]. 天然气地球科学, 2019, 30(9): 1319-1331.
[9] 张磊夫, 董大忠, 孙莎莎, 于荣泽, 李林, 林士尧, 欧阳小虎, 施振生, 武瑾, 昌燕, 马超, 李宁. 三维地质建模在页岩气甜点定量表征中的应用[J]. 天然气地球科学, 2019, 30(9): 1332-1340.
[10] 徐加祥, 杨立峰, 丁云宏, 刘哲, 高睿, 王臻. 基于四参数随机生长模型的页岩储层应力敏感分析[J]. 天然气地球科学, 2019, 30(9): 1341-1348.
[11] 张梦琪, 邹才能, 关平, 董大忠, 孙莎莎, 施振生, 李志欣, 冯子齐, 李拉毛才旦. 四川盆地深层页岩储层孔喉特征[J]. 天然气地球科学, 2019, 30(9): 1349-1361.
[12] 李二庭, 靳军, 曹剑, 马万云, 米巨磊, 任江玲. 准噶尔盆地新光地区佳木河组天然气地球化学特征及成因[J]. 天然气地球科学, 2019, 30(9): 1362-1369.
[13] 马风华, 潘进礼, 马瑞赟, 张勇, 马小娟. 六盘山盆地马东山组低熟泥页岩有机质类型划分[J]. 天然气地球科学, 2019, 30(9): 1370-1377.
[14] 李国会, 康德江, 姜丽娜, 姜瀚, 李淼, 孙海雷, 伍英. 松辽盆地北部扶余油层致密油成藏条件及甜点区优选[J]. 天然气地球科学, 2019, 30(8): 1106-1113.
[15] 王岚, 曾雯婷, 夏晓敏, 周海燕, 毕赫, 商斐, 周学先. 松辽盆地齐家—古龙凹陷青山口组黑色页岩岩相类型与沉积环境[J]. 天然气地球科学, 2019, 30(8): 1125-1133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!