天然气地球科学

• 非常规天然气 • 上一篇    下一篇

南方海相页岩物质组成与孔隙微观结构耦合关系

李文镖,卢双舫,李俊乾,张鹏飞,陈晨,王思远   

  1. 1.中国石油大学(华东)非常规油气与新能源研究院,山东 青岛 266580;
    2.中国石油大学(华东)地球科学与技术学院,山东 青岛 266580
  • 收稿日期:2018-07-08 修回日期:2018-09-27 出版日期:2019-01-10
  • 通讯作者: 李俊乾(1987-),男,河南商丘人,副教授,博士,主要从事非常规油气地质学研究. E-mail:llijunqian1987@126.com.
  • 作者简介:李文镖(1996-),男,江西上饶人,博士研究生,主要从事页岩油气储层表征及同位素分馏效应研究.E-mail:liwenbiao1996upc@163.com.
  • 基金资助:
    国家自然科学基金(编号:41672130;41602131);国家科技重大专项(编号:2016ZX05061-003-001);中国石化科技项目(编号:P17027-3)联合资助.

The coupling relationship between material composition and pore microstructure of southern China marine shale

Li Wen-biao,Lu Shuang-fang,Li Jun-qian,Zhang Peng-fei,Chen Chen,Wang Si-yuan   

  1. 1.Research Institute of Unconventional Oil & Gas and Renewable Energy,China University of Petroleum,Qingdao 266580,China;
    2.School of Geosciences,China University of Petroleum,Qingdao 266580,China
  • Received:2018-07-08 Revised:2018-09-27 Online:2019-01-10

摘要: 为研究页岩物质组成与孔隙微观结构耦合关系,对南方海相五峰组—龙马溪组30个高—过成熟页岩样品开展低温氮气吸附实验,并根据迟滞回线形态划分3类页岩。结果表明:①黏土矿物主要发育板状孔,孔径较大,从微孔(<2nm)到宏孔(>50nm)均较为发育;有机质主要发育墨水瓶状孔,主要为微孔和介孔(2~50nm)级别。②页岩比表面积主要由微孔、介孔贡献,其中微孔比表面积主要由有机质提供,黏土矿物主要提供介孔、宏孔比表面积;总孔体积主要由介孔、宏孔贡献,其中有机质主要贡献微孔、介孔体积,黏土矿物主要贡献宏孔体积。③样品普遍具有三段分形特征,且在不同孔径范围,墨水瓶状孔均要较板状孔复杂。研究成果有助于认识页岩气的储集、运移规律。


关键词: 页岩, 物质组成, 孔隙形态, 孔隙结构, 分形特征, 耦合关系

Abstract: To explore the coupling relationship between material composition and pore microstructure,30 marine shale samples with high-over maturity from the Wufeng and Longmaxi Formations,Southern China were analyzed by using nitrogen adsorption method.According to the shape of hysteresis,3 types of shales are identified.The results show that clay mineral mainly develops slit pores ranging from micropore (<2nm) to macropore (>50nm),while organic matter mainly develops inkbottle pores with the size of mesopore (2-50nm).Whether in BET specific surface area (SSA) or total pore volume (PV),mesopores always makes the largest contribution.Micropores make the second largest contribution to the SSA,while macropores offer moderate PV.The SSA of microporeis mainly provided by organic matter,and clay minerals mainly contribute to the SSA of mesopores and macropores.Clay minerals mainly provide macropore volume,while organic matter mainly contributes to micropore and mesopore volume.The shale samples generally show three stages of fractal characteristics,and in the range of different pore size,the inkbottle pores are more complex than slit pores.The results are helpful to understand the law of gas accumulation and migration.

 

Key words: Shale, Material composition, Pore shape, Pore structure, Fractal characteristics, Coupling relationship

中图分类号: 

  • TE311
[1]Yang Feng,Ning Zhengfu,Liu Huiqing.Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin,China[J].Fuel,2014,115(1):378-384.
[2]Ji Wenming,Song Yan,Jiang Zhenxue,et al.Geological controls and estimation algorithms of lacustrine shale gas adsorption capacity: A case study of the Triassic strata in the southeastern Ordos Basin,China[J].International Journal of Coal Geology,2014,134-135(13):61-73.
[3]Hou Yuguang,He Sheng,Yi Jizheng,et al.Effect of pore on methane sorption capacity of shales[J].Petroleum Exploration and Development,2014,41(2):248-256.
侯宇光,何生,易积正,等.页岩孔隙结构对甲烷吸附能力的影响[J].石油勘探与开发,2014,41(2):248-256.
[4]Xue Bing,Zhang Jinchuan,Tang Xuan,et al.Characteristics of microscopic pore and gas accumulation on shale in Longmaxi Formation,northwest Guizhou[J].Acta Petrolei Sinica,2015,36(2):138-149.
薛冰,张金川,唐玄,等.黔西北龙马溪组页岩微观孔隙结构及储气特征[J].石油学报,2015,36(2):138-149.
[5]Tian Hua,Zhang Shuichang,Liu Shaobo,et al.The dual influence of shale composition and pore size on adsorption gas storage mechanism of organic-rich shale[J].Natural Gas Geoscience,2016,27(3):494-502.
田华,张水昌,柳少波,等.富有机质页岩成分与孔隙结构对吸附气赋存的控制作用[J].天然气地球科学,2016,27(3):494-502.
[6]Shi Miao,Yu Bingsong,Zhang Jinchuan,et al.Microstructural characterization of pores in marine shales of the Lower Silurian Longmaxi Formation,southeastern Sichuan Basin,China[J].Marine & Petroleum Geology,2018,94(6):166-178.
[7]Li Zhiqing,Shen Xin,Qi Zhiyu,et al.Study on the pore structure and fractal characteristics of marine and continental shale based on mercury porosimetry,N2 adsorption and NMR methods[J].Journal of Natural Gas Science & Engineering,2018,53(5):12-21.
[8]Zhu Hanqing,Jia Ailin,Wei Yunsheng,et al.Pore structure and supercriticial methane sorption capacity of organic-rich shales in southern Sichuan Basin[J].Acta Petrolei Sinica,2018,39(4):391-401.
朱汉卿,贾爱林,位云生,等.蜀南地区富有机质页岩孔隙结构及超临界甲烷吸附能力[J].石油学报,2018,39(4):391-401.
[9]Javadpour F,Fisher D,Unsworth M.Nanoscale gas flow in shale gas sediments[J].Journal of Canadian Petroleum Technology,2007,46(10):55-61.
[10]Zou Caineng,Tao Shizhen,Yang Zhi,et al.New advance in unconventional petroleum exploration and research in China[J].Bulletin of Mineralogy,Petrology and Geochemistry,2012,31(4):312-322.
邹才能,陶士振,杨智,等.中国非常规油气勘探与研究新进展[J].矿物岩石地球化学通报,2012,31(4):312-322.
[11]Duan Yonggang,Cao Tingkuan,Yang Xiaoying,et al.Simulation of gas flow in nano-scale pores of shale gas deposits[J].Journal of Southwest Petroleum University:Science & Technology Edition,2015,37(3):63-68.
段永刚,曹廷宽,杨小莹,等.页岩储层纳米孔隙流动模拟研究[J].西南石油大学学报:自然科学版,2015,37(3):63-68.
[12]Yang Rui,He Sheng,Yi Jizheng,et al.Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area,Sichuan Basin: Investigations using FE-SEM,gas adsorption and helium pycnometry[J].Marine & Petroleum Geology,2016,70(2):27-45.
[13]Yang Rui,He Sheng,Hu Qinhong,et al.Applying SANS technique to characterize nano-scale pore structure of Longmaxi shale,Sichuan Basin (China)[J].Fuel,2017,197(11):91-99.
[14]Xi Zhangdong,Wang Jing,Hu Jingang,et al.Experimental investigation of evolution of pore structure in Longmaxi marine shale using an anhydrous pyrolysis technique[J].Mineral,2018,8(6):226.
[15]Yang Rui,He Sheng,Hu Qinghong,et al.Pore characterization and methane sorption capacity of over-mature organic-rich Wufeng and Longmaxi shales in the southeast Sichuan Basin,China[J].Marine & Petroleum Geology,2016,77(9):247-261.
[16]Tian Hua,Zhang Shuichang,Liu Shaobo,et al.Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J].Acta Petrolei Sinica,2012,33(3):419-427.
田华,张水昌,柳少波,等.压汞法和气体吸附法研究富有机质页岩孔隙特征[J].石油学报,2012,33(3):419-427.
[17]Hu Jingang,Tang Shuheng,Zhang Songhang.Investigation of pore structure and fractal characteristics of the Lower Silurian Longmaxi shales in western Hunan and Hubei Provinces in China[J].Journal of Natural Gas Science & Engineering,2016,28(6):522-535.
[18]Chen Yanyan,Zou Caineng,Maria Mastalerz,et al.Porosity and fractal characteristics of shale across a maturation gradient[J].Natural Gas Geoscience,2015,26(9):1646-1656.
陈燕燕,邹才能,Maria Mastalerz,等.页岩微观孔隙演化及分形特征研究[J].天然气地球科学,2015,26(9):1646-1656.
[19]Strapoc D,Mastalerz M,Schimmelmann A,et al.Geochemical constraints on the origin and volume of gas in the New Albany shale(Devonian-Mississippian),eastern Illinois Basin[J].AAPG Bulletin,2010,94(11):1713-1740.
[20]Yang Feng,Ning Zhengfu,Wang Qing,et al.Fractal characteristics of nanopore in shales[J].Natural Gas Geoscience,2014,25(4):618-623.
杨峰,宁正福,王庆,等.页岩纳米孔隙分形特征[J].天然气地球科学,2014,25(4):618-623.
[21]Avnir D,Jaroniec M.An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials[J].Langmuir,1989,5(6):1431-1433.
[22]Zhang Chuanghui,Zhu Yanming,Liu Yu,et al.Pore and fractal characteristics of shale in different maturity[J].Fault-Block Oil & Gas Field,2016,23(5):583-588.
张闯辉,朱炎铭,刘宇,等.不同成熟度页岩孔隙及其分形特征[J].断块油气田,2016,23(5):583-588.
[23]Xi Zhaodong,Tang Shuheng,Wang Jing,et al.Pore structure and fractal characteristics of Niutitang shale from China[J].Minerals,2018,8(4):163.
[24]Zhao Difei,Guo Yinghai,Xie Delu,et al.Fractal characteristics of shale reservoir pores based on nitrogen adsorption[J].Journal of Northeast Petroleum University,2014,38(6):100-108.
赵迪斐,郭英海,解德录,等.基于低温氮吸附实验的页岩储层孔隙分形特征[J].东北石油大学学报,2014,38(6):100-108.
[25]Tang Xianglu,Jiang Zhenxue,Li Zhuo,et al.The effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi Formation in the southeastern Sichuan Basin,China[J].Journal of Natural Gas Science & Engineering,2015,23(2):464-473.
[26]Xi Zhaodong,Tang Shuheng,Li Jun,et al.Investigation of pore structure and fractal characteristics of marine-continental transitional shale in the east-central of Qinshui Basin[J].Natural Gas Geoscience,2017,28(3):366-376.
郗兆栋,唐书恒,李俊,等.沁水盆地中东部海陆过渡相页岩孔隙结构及分形特征[J].天然气地球科学,2017,28(3):366-376.
[27]Xiong Jian,Liu Xiangjun,Liang Lixi.Fractal characteristics of organic rich shale pore in Sichuan Basin,China[J].Fault-Block Oil & Gas Field,2017,24(2):184-189.
熊健,刘向君,梁利喜.四川盆地富有机质页岩孔隙分形特征[J].断块油气田,2017,24(2):184-189.
[28]Yao Minglei,Shao Longyi,Hou Haihai,et al.Coal Reservoir pore structural and fractal features in Huainan and Huaibei coalfields[J].Coal Geology of China,2018,30(1):30-37.
姚铭檑,邵龙义,侯海海,等.两淮煤田煤储层吸附孔孔隙结构及分形特征[J].中国煤炭地质,2018,30(1):30-37.
[29]Sing K S W,Everett D H,Haul R A W,et al.Reportingphysisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J].Pure & Applied Chemistry,1985,57(4):603-619.
[30]Li Zhuo,Jiang Zhenxue,Tang Xianglu,et al.Lithofacies characteristics and its effect on pore structure of the marine shale in the Low Silurian Longmaxi Formation,Southeastern Chongqing[J].Earth Science,2017,42(7):1116-1123.
李卓,姜振学,唐相路,等.渝东南下志留统龙马溪组页岩岩相特征及其对孔隙结构的控制[J].地球科学,2017,42(7):1116-1123.
[31]Chen Liang,Tan Kaixuan,Liu Jiang,et al.Pore structure fractal features of the Ore-bearing layer from a sandstone-type uranium deposit,Xinjiang[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2012,51(6):139-144.
陈亮,谭凯旋,刘江,等.新疆某砂岩铀矿含矿层孔隙结构的分形特征[J].中山大学学报:自然科学版,2012,51(6):139-144.
[1] 姜瑞忠, 原建伟, 崔永正, 张伟, 张福蕾, 张海涛, 毛埝宇. 基于TPHM的页岩气藏多级压裂水平井产能分析[J]. 天然气地球科学, 2019, 30(1): 95-101.
[2] 周尚文, 王红岩, 刘浩, 郭伟, 陈浩. 基于Arps产量递减模型的页岩损失气量计算方法[J]. 天然气地球科学, 2019, 30(1): 102-110.
[3] 郭旭升. 四川盆地涪陵平桥页岩气田五峰组—龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(1): 1-10.
[4] 许崇祯, 张公社, 殷嘉伟, 纪国法, 李新发. 考虑解吸—吸附的页岩气藏压裂水平井综合渗流模型[J]. 天然气地球科学, 2019, 30(1): 111-118.
[5] 周立宏,蒲秀刚,肖敦清,李洪香,官全胜,林伶,曲宁. 渤海湾盆地沧东凹陷孔二段页岩油形成条件及富集主控因素[J]. 天然气地球科学, 2018, 29(9): 1323-1332.
[6] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[7] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[8] 张世铭,王建功,张小军,张婷静,曹志强,杨麟科. 酒西盆地间泉子段储层流体赋存及渗流特征[J]. 天然气地球科学, 2018, 29(8): 1111-1119.
[9] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[10] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[11] 朱维耀, 马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[12] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[13] 王香增,张丽霞,姜呈馥,尹锦涛,高潮,孙建博,尹娜,薛莲花. 鄂尔多斯盆地差异抬升对长7页岩孔隙的影响——以东南部甘泉地区和南部渭北隆起地区为例[J]. 天然气地球科学, 2018, 29(5): 597-605.
[14] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[15] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李广之, 胡斌 邓天龙 袁子艳 . 微量元素V和Ni的油气地质意义[J]. 天然气地球科学, 2008, 19(1): 13 -17 .
[2] 窦启龙,陈践发,王杰,张殿伟. 微生物采油技术的研究进展及展望[J]. 天然气地球科学, 2004, 15(5): 559 -563 .
[3] 梁艳;李延钧;付晓文;袁续祖;杨坚;郑键;. 川中-川南过渡带上三叠统须家河组油气全烃地球化学特征与成因[J]. 天然气地球科学, 2006, 17(4): 593 -596 .
[4] 妥进才, 王先彬, 周世新, 陈晓东, . 深层油气勘探现状与研究进展[J]. 天然气地球科学, 1999, 10(6): 1 -8 .
[5] 王东旭;曾溅辉;宫秀梅;. 膏盐岩层对油气成藏的影响[J]. 天然气地球科学, 2005, 16(3): 329 -333 .
[6] 周兴熙. 塔里木盆地克拉2气田成藏机制再认识[J]. 天然气地球科学, 2003, 14(5): 354 -361 .
[7] 徐士林,吕修祥,周新源,马玉杰,杨明慧,刘洛夫. 塔里木盆地库车坳陷天然气高压封存箱[J]. 天然气地球科学, 2003, 14(5): 362 -365 .
[8] 马玉杰,谢会文,蔡振忠,张丽娟,郜国玺. 库车坳陷迪那2气田地质特征[J]. 天然气地球科学, 2003, 14(5): 371 -374 .
[9] 许浩;汤达祯;魏国齐;张君峰;吴世祥;. 川西地区须二段油气充注历史的流体包裹体分析[J]. 天然气地球科学, 2005, 16(5): 571 -574 .
[10] 王宗贤;陈泽良;杨树合;易继贵;杨丽容;谭振华;李辉;. 流体相态研究在凝析气藏开发中的应用[J]. 天然气地球科学, 2005, 16(5): 662 -665 .