天然气地球科学

• 非常规天然气 • 上一篇    下一篇

中扬子宜昌地区五峰组和龙马溪组页岩发育主控因素

王涛利,郝爱胜,陈清,李,王庆涛,卢鸿,刘大永   

  1. 1.中国科学院广州地球化学研究所,有机地球化学国家重点实验室,广东 广州 510640;
    2.中国科学院大学,北京 100049;
    3.中国石油勘探开发研究院廊坊分院,河北 廊坊 065007;
    4.中国科学院南京地质古生物研究所,资源地层学与古地理学重点实验室,江苏 南京 210008;
    5.中国科学院南京地质古生物研究所,现代古生物学和地层学国家重点实验室,江苏 南京 210008
  • 收稿日期:2017-12-22 修回日期:2018-08-28 出版日期:2018-05-10 发布日期:2018-05-10
  • 通讯作者: 王庆涛(1987-),男,山东淄博人,副研究员,博士,主要从事非常规页岩储层评价研究. E-mail:wangqingtao@gig.ac.cn
  • 作者简介:王涛利(1992-),男,四川眉山人,博士研究生,主要从事非常规油气地球化学研究.E-mail:wangtaoli@gig.ac.cn.
  • 基金资助:
    国家自然科学基金(编号:41602130);中国科学院战略性先导科技专项(B类)(编号:XDB10010504);广东省自然科学基金(编号:2016A030310116)联合资助.
     

The study of main factors controlling the development of Wufeng Formation andLongmaxi Formation organic-rich shales in the Yichang area,Middle Yangtze Region

Wang Tao-li,Hao Ai-sheng,Chen Qing,Li Chao,Wang Qing-tao,Lu Hong,Liu Da-yong   

  1. 1.State Key Laboratory of Organic Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China;
    2.University of Chinese Academy of Sciences,Beijing 100049,China;
    3.CNPC Laboratory of Gas Reservoir Formation and Development,PetroChina Research Institute
    of Petroleum Exploration and Development-Langfang,Langfang 065007,China;
    4.Key Laboratory of Economic Stratigraphy and Paleogeography,Nanjing Institute of Geology
    and Palaeontology,Chinese Academy of Sciences,Nanjing 210008,China;
    5.State Key Laboratory of Palaeobiology and Stratigraphy,Nanjing Institute of Geology andPalaeontology,Chinese Academy of Sciences,Nanjing 210008,China
  • Received:2017-12-22 Revised:2018-08-28 Online:2018-05-10 Published:2018-05-10

摘要:

中扬子地区页岩气勘探潜力巨大,但页岩发育机制研究相对滞后。选取宜昌地区临湘组、五峰组和龙马溪组25个样品开展了总有机碳(TOC)和主、微量元素测试,重点调查古生产力、沉积环境和陆源输入等指标与富有机质页岩发育的关系。研究发现:五峰组和龙马溪组下段为富有机质层段,过量硅为生物来源;微量元素中P/Ti、Ba/Al和过量钡等古生产力指标与TOC无关,这可能与P、Ba沉积后期的损耗有关;过量铜、过量镍和过量锌构建的古生产力替代系数与TOC呈正相关性,表明高生产力与富有机质页岩的发育密不可分,这与前人的认识有很大不同;氧化还原敏感元素U、V和Mo在五峰组和龙马溪组下段相对富集,且V、Mo与TOC 有良好正相关性,表明还原沉积环境是富有机质页岩发育的必要条件;陆源输入指标Al2O3在龙马溪组上段最高,且TOC与Al、Ti和Th呈负相关关系,表明陆源输入增加对有机质具有稀释效应。综上所述,高古生产力、还原沉积环境和较低的陆源输入有利于海相富有机质页岩的发育。

关键词: 五峰组和龙马溪组, 古生产力, 沉积环境, 有机质富集, 主、微量元素, 中扬子地区

Abstract:

Although the huge potential of shale gas in the Middle Yangtze Region,mechanism of the development of organic-rich shales are not clear.In this study,total organic carbon,major and trace elements analysis were conducted on 25 samples,in order to investigate the relationships between paleoproductivity,sedimentary environment,terrigenous flux and the development of shale.The data show that the shales from Wufeng Formation and Lower Longmaxi Formation have high TOC values and high excess-Si content,which indicates that excess-Si is in biogenic origin.There is no positive relationship between conventional paleoproductivity proxies (P/Ti,Ba/Al,Baxs) and TOC,which is probably attributed to the depletion of those elements in the late diagenesis phase.However,paleoproductivity coefficient composed by excess-Cu,excess-Ni and excess-Zn correlates with TOC well,which illustrates that the development of organic-rich shale has a close relationship with high paleoproductivity.Moreover,redox sensitive elements (U,V,Mo) are more enriched in Wufeng Formation and Lower Longmaxi Formation than Upper Longmaxi Formation,while positive correlations between V,Mo and TOC occurs.These phenomena state that reductive environment is necessary to preserve organic matter.Terrigenous flux proxies (Al2 O3) represented that the strongest terrigenous flux in Upper Longmaxi Formation,and TOC shows negative relationship with Al,Ti and Th,which illustrates that the strengthened terrigenous flux diluted organic matter.In conclusion,high paleoproductivity and reductive sedimentary environment and low terrigenous flux are beneficial to the development of marine organic-rich shale.

Key words: Wufeng Formation and Longmaxi Formations, Paleoproductivity, Sedimentary environment, Organic matter enrichment, Major and trace elements, Middle Yangtze Region

中图分类号: 

  • TE122.1


[1]Arthur M A,Sageman B B.Marine black shales:Depositional mechanisms and environments of ancient deposits[J].Annual Review of Earth and Planetary Sciences,1994,22:499-551.
[2]Chen C,Mu C L,Zhou K K,et al.The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin,South China[J].Marine and Petroleum Geology,2016,76:159-175.
[3]Tribovillard N,Algeo T J,Lyons T,et al.Trace metals as paleoredox and paleoproductivity proxies:An update[J].Chemical Geology,2006,232:12-32.
[4]Algeo T J,Maynard J B.Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J].Chemical Geology,2004,206:289-318.
[5]Li Yanfang,Shao Deyong,Lv Haigang,et al.A relationship between element geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation-Longmaxi Formation,Sichuan Basin[J].Acta Petrolei Sinica,2015,36(12):1470-1483.
李艳芳,邵德勇,吕海刚,等.四川盆地五峰组和龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J].石油学报,2015,36(12):1470-1483.
[6]Liu Shugen,Wang Shiyu,Sun Wei,et al.Characteristics of black shale in Wufeng Formation and Longmaxi Formation in Sichuan Basin and its peripheral areas[J].Journal of Chengdu University of Technology:Science & Technology Edition,2013,40(6):621-639.
刘树根,王世玉,孙玮,等.四川盆地及其周缘五峰组和龙马溪组黑色页岩特征[J].成都理工大学学报:自然科学版,2013,40(6):621-639.
[7]Zhang Xiaolong.The Study of Organic Matter Characteristic,Sedimentary Environment and Shale Gas Potential for Wufeng-Longmaxi Shale in Sichuan Basin and Its Periphery,China[D].Lanzhou:Lanzhou University,2015:53-56.
张小龙.四川盆地及周边地区五峰组和龙马溪组页岩有机质特征、沉积环境和含气性研究[D].兰州:兰州大学,2015:53-56.
[8]Wang Yuman,Wang Shufang,Dong Dazhong,et al.Lithofacies characterization of Longmaxi Formation of the Lower Silurian,southern Sichuan[J].Earth Science Frontiers,2016,23(1):119-133.
王玉满,王淑芳,董大忠,等.川南下志留统龙马溪组页岩岩相表征[J].地学前缘,2016,23(1):119-133.
[9]Wang Yuman,Li Xinjing,Dong Dazhong,et al.Main factors controlling the sedimentation of high-quality shale in Wufeng-Longmaxi Formation,Upper Yangtze region[J].Natural Gas Industry,2017,37(4):9-20.
王玉满,李新景,董大忠,等.上扬子地区五峰组和龙马溪组优质页岩沉积主控因素[J].天然气工业,2017,37(4):9-20.
[10]Qiu Zhen,Zhou Jie,Lu Bin,et al.The main factors of differential organic enrichment of the Ordovician Wufeng Formation and Silurian Lungmachi Formation in the Sichuan Basin and its adjacent areas[J].Chinese Journal of Geology,2017,52(1):156-169.
邱振,周杰,卢斌,等.四川盆地及其周缘五峰组和龙马溪组有机质差异富集的主控因素探讨[J].地质科学,2017,52(1):156-169.
[11]Feng Aiguo,Zhang Jianping,Shi Yuanhui,et al.Characteristics of marine shale gas play in Fuling block in the Middle Yangtze area[J].Special Oil and Gas Reservoirs,2013,20(6):15-20.
冯爱国,张建平,石元会,等.中扬子地区涪陵区块海相页岩气层特征[J].特种油气藏,2013,20(6):15-20.
[12]Zhao W Z,Li J Z,Yang T,et al.Geological difference and its significance of marine shale gases in South China[J].Petroleum Exploration and Development,2016,43(4):547-559.
[13]Guo Xusheng,Hu Dongfeng,Li Yuping,et al.Geological factors controlling shale gas enrichment and high production in Fuling shale gas field[J].Petroleum Exploration and Development,2017,44(4):481-491.
郭旭升,胡东风,李宇平,等.涪陵页岩气田富集高产主控地质因素[J].石油勘探与开发,2017,44(4):481-491.
[14]Chen X,Rong J Y,Li Y,et al.Facies patterns and geography of the Yangtze region,South China,through the Ordovician and Silurian transition[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2004,204:353-372.
[15]Zhang Linna.Quantitative Palaeogeographic Reconstruction of South China in the Ordovician Based on Database and GIS[D].Beijing:University of Chinese Academy of Sciences,2016:17-18,121-140.
张琳娜.基于数据库和地理信息系统的华南奥陶纪定量古地理研究[D].北京:中国科学院大学,2016:17-18,121-140.
[16]Qiu Xiaosong,Yang Bo,Hu Mingyi.Characteristics of shale reservoirs and gas content of Wufeng-Longmaxi Formation in the Middle Yangtze region[J].Natural Gas Geoscience,2013,24(6):1274-1283.
邱小松,杨波,胡明毅.中扬子地区五峰组和龙马溪组页岩气储层及含气性特征[J].天然气地球科学,2013,24(6):1274-1283.
[17]Li Yanxia,Lin Juanhua,Long Youkang,et al.Exploration prospect of gas-bearing marine mudstone-shale in Lower Palaeozoic in the Central Yangtze area,China[J].Geological Bulletin of China,2011,30(2/3):349-356.
李艳霞,林娟华,龙幼康,等.中扬子地区下古生界海相泥—页岩含气勘探远景[J].地质通报,2011,30(2/3):349-356.
[18]Yan Detian,Wang Jianguo,Wang Zhuozhuo.The characteristics of biogenic barium and its paleoproductivity significance of Upper Ordovician-Lower Silurian in Yangtze region[J].Journal of Xi’an Shiyou University:Natural Science Edition,2009,24(4):16-21.
严德天,汪建国,王卓卓.扬子地区上奥陶-下志留统生物钡特征及其古生产力意义[J].西安石油大学学报:自然科学版,2009,24(4):16-21.
[19]Wang Shufang,Zou Caineng,Dong Dazhong,et al.Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2014,50(3):476-486.
王淑芳,邹才能,董大忠,等.四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J].北京大学学报:自然科学版,2014,50(3):476-486.
[20]Zhao J H,Jin Z K,Jin Z J,et al.Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan Basin,South China:Implications for pore evolution[J].Journal of Natural Gas Science and Engineering,2017,38:21-38.
[21]Yan D T,Chen D Z,Wang Q C,et al.Carbon and sulfur isotopic anomalies across the Ordovician-Silurian boundary on the Yangtze Platform,South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2009,274:32-39.
[22]Zhang Pengfei.Pattern and Evolution of Paleozoic Tectono-Palaeogeography in the Middle Yangtze Region[D].Qingdao:China University of Petroleum (East China),2009:103-106.
张鹏飞.中扬子地区古生代构造古地理格局及其演化[D].青岛:中国石油大学(华东),2009:103-106.
[23]Xu Wenli,Zheng Rongcai,Yan Xue,et al.Trace and rare earthelement geochemistry of the Early Paleozoic black shales in the Lower Yangtze area and its geological significances[J].Journal of Jilin University:Earth Science Edition,2014,44(4):1108-1122.
徐文礼,郑荣才,颜雪,等.下扬子地区早古生代黑色岩系地球化学特征及其地质意义[J].吉林大学学报:地球科学版,2014,44(4):1108-1122.
[24]Li Y F,Zhang T W,Ellis G S,et al.Depositional environment and organic matter accumulation of Upper Ordovician-Lower Silurian marine shale in the Upper Yangtze Platform,South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2017,466:252-264.
[25]McLennan S M.Relationships between the trace element composition of sedimentary rocks and upper continental crust[J].Geochemistry,Geophysics,Geosystems,2001,2(4):2000GC 000109.
[26]Ross D J K,Bustin R M.Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata:Examples from the Devonian-Mississippian shales,western Canadian sedimentary basin[J].Chemical Geology,2009,260:1-19.
[27]Zhao Jianhua,Jin Zhijun,Jin Zhenkui,et al.The genesis of quartz in Wufeng-Longmaxi gas shales,Sichuan Basin[J].Natural Gas Geoscience,2016,27(2):377-386.
赵建华,金之钧,金振奎,等.四川盆地五峰组和龙马溪组含气页岩中石英成因研究[J].天然气地球科学,2016,27(2):377-386.
[28]Zhang Chunming,Zhang Weisheng,Guo Yinghai,et al.Sedimentary environment and its effect on hydrocarbon source rocks of Longmaxi Formation in southeast Sichuan and northern Guizhou[J].Earth Science Frontiers,2012,19(1):136-145.
张春明,张维生,郭英海,等.川东南—黔北地区龙马溪组沉积环境及对烃源岩的影响[J].地学前缘,2012,19(1):136-145.
[29]Algeo T J,Kuwahara K,Sano H,et al.Spatial variation in sediment fluxes,redox conditions,and productivity in the Permian-Triassic Panthalassic ocean[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2011,308:65-83.
[30]Dymond J,Suess E,Lyle M.Barium in deep-sea sediment:A geochemical proxy for paleoproductivity[J].Paleoceanography,1992,7(2):163-181.
[31]Mrz C,Poulton S W,Wagner T,et al.Phosphorus burial and diagenesis in the central Bering Sea(Bowers Ridge,IODP Site U1341):Perspectives on the marine P cycle[J].Chemical Geology,2014,363:270-282.
[32]Wang Q T,Lu H,Wang T L,et al.Pore characterization of Lower Silurian shale gas reservoirs in the Middle Yangtze region,central China[J].Marine and Petroleum Geology,2018,89:14-26.
[33]Zhang Hui,Peng Ping’an.Study on the recovery of original organic carbon content of source rock[J].Geochimica,2011,40(1):56-62.
张辉,彭平安.烃源岩有机碳含量恢复探讨[J].地球化学,2011,40(1):56-62.
[34]Fernex F,Février G,Bénam J,et al.Copper,lead and zinc trapping in Mediterranean deep-sea sediments:Probable coprecipitation with Mn and Fe[J].Chemical Geology,1992,98:293-306.
[35]Morse J W,Luther III G W.Chemical influences on trace metal-sulfide interactions in anoxic sediments[J].Geochimica et Cosmochimica Acta,1999,63(19/20):3373-3378.
[36]Chen Hui,Xie Xinong,Li Hongjing,et al.Evaluation of the Permian marine hydrocarbon source rocks at Shangsi section in Sichuan Province using multi-proxies of paleoproductivity and paleoredox[J].Journal of Palaegeography,2010,12(3):324-333.
陈慧,解习农,李红敬,等.利用古氧相和古生产力替代指标评价四川上寺剖面二叠系海相烃源岩[J].古地理学报,2010,12(3):324-333.
[37]Algeo T J,Rowe H.Paleoceanographic applications of trace-metal concentration data[J].Chemical Geology,2012,324/325:6-18.
[38]Rimmer S M,Thompsona J A,Goodnight S A,et al.Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales:Geochemical and petrographic evidence[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2004,215:125-154.
[39]Tribovillard N,Algeo T J,Baudin F,et al.Analysis of marine environmental conditions based on molybdenum-uranium covariation-Applications to Mesozoic paleoceanography[J].Chemical Geology,2012,(324/325):46-58.
[40]Li Yanfang.Geochemical Characteristics and Organic Matter Accumulation of Late Ordovician-Early Silurian Shale in the Upper Yangtze Platform,and Implications for Paleoenvironment[D].Lanzhou:Lanzhou University,2017:54-58.
李艳芳.上扬子地区晚奥陶世-早志留世页岩地球化学特征、有机质富集及古环境意义[D].兰州:兰州大学,2017:54-58.
[41]Calvert S E,Pedersen T F.Elemental proxies for palaeoclimatic and palaeoceanographic variability[J].Developments in Marine Geology,2007,1:567-644.
[42]Chen X.Influence of the Late Ordovician glaciation on basin configuration of the Yangtze Platform in China[J].Lethaia,1984,17:51-59.
[43]Rong Jiayu,Chen Xu.Faunal differentiation,biofacies and lithofacies pattern of Late Ordovician (ashgillian) in South China[J].Acta Palaeontologica Sinica,1987,26(5):507-535.
戎嘉余,陈旭.华南晚奥陶世的动物群分异及生物相、岩相分布模式[J].古生物学报,1987,26(5):507-535.
[44]Zheng Herong,Gao Bo,Peng Yongmin,et al.Sedimentary evolution and shale gas exploration direction of Lower Silurian in Middle-Upper Yangtze area[J].Journal of Palaeogeography,2013,15(5):645-656.
郑和荣,高波,彭勇民,等.中上扬子地区下志留统沉积演化与页岩气勘探方向[J].古地理学报,2013,15(5):645-656.
[45]Yan D T,Chen D Z,Wang Q C,et al.Large-scale climatic fluctuations in the Latest Ordovician on the Yangtze block,South China[J].Geology,2010,38(7):599-602.

[1] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[2] 申宝剑,秦建中,腾格尔,潘安阳,仰云峰,边立曾. 中国南方海相烃源岩中细菌状化石识别[J]. 天然气地球科学, 2018, 29(4): 510-517.
[3] 曹涛涛,邓模,宋之光,刘光祥,黄俨然,Andrew Stefan Hursthouse. 黄铁矿对页岩油气富集成藏影响研究[J]. 天然气地球科学, 2018, 29(3): 404-414.
[4] 刘佳宜,刘全有,朱东亚,孟庆强,刘文汇,邱登峰,黄振凯. 深部流体在富有机质烃源岩形成中的作用[J]. 天然气地球科学, 2018, 29(2): 168-177.
[5] 王钊,周新平,李树同,李士祥,邱军利,张文选,王琪. 鄂尔多斯盆地吴起地区长9段和长10段原油地球化学特征对比[J]. 天然气地球科学, 2017, 28(9): 1385-1395.
[6] 汪宗欣,吕修祥,钱文文. 寒武系海相碳酸盐岩元素地球化学特征及其油气地质意义——以塔里木盆地柯坪地区肖尔布拉克组为例[J]. 天然气地球科学, 2017, 28(7): 1085-1095.
[7] 刘英杰,黄传炎,岳家恒,郭来源. 陆相湖盆层序地层格架内有机质发育及控制因素分析——以中上扬子建南地区侏罗系东岳庙段为例[J]. 天然气地球科学, 2017, 28(6): 930-938.
[8] 郭佳佳,孙国强,龙国徽,管斌,康健,夏维民,陈波,史基安. 柴达木盆地北缘冷湖五号构造下侏罗统沉积—成岩环境分析[J]. 天然气地球科学, 2017, 28(12): 1839-1845.
[9] 王静彬,高志前,康志宏,杨有星,卫端,秦念通. 塔里木盆地塔西南坳陷和田凹陷普司格组烃源岩沉积环境及有机地球化学特征[J]. 天然气地球科学, 2017, 28(11): 1723-1734.
[10] 张晨晨,王玉满,董大忠,管全中. 川南长宁地区五峰组—龙马溪组页岩脆性特征[J]. 天然气地球科学, 2016, 27(9): 1629-1639.
[11] 耳闯,赵靖舟,王芮,张杰,袁野,沈武显. 鄂尔多斯盆地三叠系延长组富有机质页岩孔隙特征及发育机制[J]. 天然气地球科学, 2016, 27(7): 1202-1214.
[12] 孟昊,任影,钟大康,高崇龙,高宙,王点,姜杨锦丰,李谨杰. 四川盆地东部寒武系龙王庙组地球化学特征及其古环境意义[J]. 天然气地球科学, 2016, 27(7): 1299-1311.
[13] 张少敏,操应长,朱如凯,王尉,涂建琪,毛治国,白斌. 雅布赖盆地小湖次凹细粒沉积岩岩相特征与沉积环境探[J]. 天然气地球科学, 2016, 27(2): 309-319.
[14] 高岗,向宝力,王轩,王熠,周然然,马万云,任江铃,赵克. 准噶尔盆地吉木萨尔凹陷芦草沟组湖相混合沉积中缝合线发育与有机质富集研究[J]. 天然气地球科学, 2016, 27(11): 1963-1969.
[15] 宋换新,文志刚,包建平. 祁连山木里地区煤岩有机地球化学特征及生烃潜力[J]. 天然气地球科学, 2015, 26(9): 1803-1813.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606 -615 .