天然气地球科学

• 天然气开发 • 上一篇    下一篇

四川盆地志留系龙马溪组页岩裂缝应力敏感实验

端祥刚,安为国,胡志明,高树生,叶礼友,常进   

  1. 中国石油勘探开发研究院,河北 廊坊 065000
  • 收稿日期:2017-04-20 修回日期:2017-07-16 出版日期:2017-09-10 发布日期:2017-09-10
  • 作者简介:端祥刚(1987-),男,安徽宿州人,工程师,博士,主要从事非常规油气渗流理论研究. E-mail:duanxg69@petrochina.com.cn.
  • 基金资助:

    国家“十三五”科技重大专项“页岩气气藏工程及采气工艺技术”(编号:2017ZX05037-001);国家重点基础研究发展计划“973”项目“中国南方海相页岩气高效开发的基础研究”(编号:2013CB228000)联合资助.

Experimental study on fracture stress sensitivityof Silurian Longmaxi shale formation,Sichuan Basin

Duan Xiang-gang,An Wei-guo,Hu Zhi-ming,Gao Shu-sheng,Ye Li-you,Chang Jin   

  1. PetroChina Research Institute of Petroleum Exploration & Development,Langfang 065007,China
  • Received:2017-04-20 Revised:2017-07-16 Online:2017-09-10 Published:2017-09-10

摘要:

裂缝网络是页岩气有效开发的基础,为研究页岩裂缝渗透率在有效应力作用下的变化规律,选取具有代表性的四川盆地龙马溪组页岩样品,通过实验考察了基质、微裂缝和人工裂缝渗透率对应力的敏感程度,总结了孔渗幂指数模型、Gangi模型和Walsh模型对裂缝渗透率的拟合和修正结果,并探讨了支撑裂缝和裂缝滑移降低应力敏感性的作用机理。研究结果表明,微裂缝和人工无填充裂缝的渗透率的应力敏感最强,随着有效应力的增加呈指数式递减,Gangi模型和Walsh模型的拟合精度都在97%以上,参数分析结果表明可通过增加裂缝面的粗糙度和向裂缝加入支撑剂来降低其应力敏感系数。有支撑和滑移裂缝的应力敏感性最低,仅仅在一定应力范围内满足Walsh模型。高应力状态下,优选强度较高、耐压性好的陶粒支撑剂有利于提高裂缝的导流能力,而裂缝滑移在一定程度上比裂缝支撑剂更能增加裂缝渗透率,因此在水力压裂模型中应该考虑设计裂缝滑移来降低裂缝的应力敏感性。
 
 

关键词: 人工裂缝, 渗透率, 应力敏感性, 支撑剂, 裂缝滑移

Abstract:

Fracture network is the foundation of effective development of shale reservoir.In order to investigate the change of fracture permeability under different effective stress,the typical shale core sample from Silurian Longmaxi Group in Sichuan Basin was selected.Firstly,the stress sensitivity coefficient of matrix,micro fracture and artificial fracture was evaluated through experiment,then the experimental data were fitted and corrected by exponential model,Gangi model and Walsh model.At last,the mechanism of proppant and shear displacement on decreasing stress sensitivity coefficient was discussed.The results show that the permeability of micro fracture and artificial fracture are more sensitive to the effective stress,and exponentially decline with the stress.The fitting accuracy of Gangi and Walsh models is more than 97%.And it also demonstrates that the stress sensitivity coefficient can be reduced by increasing the fracture roughness and proppant.The proppant and shear displacement fracture have the lowest stress sensitivity coefficient,and the result is only fitting the Walsh model in a certain range of stress.The ceramic proppant with high strength and pressure resistance can improve the fracture conductivity in high stress condition formation.The slip of fracture surface can increase the fracture roughness and aperture,which enhance the fracture permeability more effectively than proppant.Therefore it is suggested that hydraulic simulations should be designed to induce shear displacement to decrease the stress sensitivity of fractured permeability.
 

Key words: Shale, Artificial fracture, Permeability, Stress sensitivity, Proppant;Slip

中图分类号: 

  • TE122.1

[1]Yves G,Amin G,Robert C J,et al.Gas storage capacity and transport in shale gas reservoirs-A review.Part A:Transport processes[J].Journal of Unconventional Oil & Gas Resources,2015,12(2):87-122.
[2]Zhang Rui,Ning Zhengfu,Yang Feng,et al.Shale stress sensitivity experiment and mechanism[J].Acta Petrolei Sinica,2015,36(2):224-231.[张睿,宁正福,杨峰,等.页岩应力敏感实验与机理[J].石油学报,2015,36(2):224-231.]
[3]Yu W,Luo Z,Javadpour F,et al.Sensitivity analysis of hydraulic fracture geometry in shale gas reservoirs[J].Journal of Petroleum Science and Engineering,2014,113(1):1-7.
[4]Yu Zhongling,Xiong Wei,Gao Shusheng,et al.Stress sensitivity of tight reservoir and its influence on oilfield development[J].Acta Petrolei Sinica,2007,28(4):99-102.[于忠良,熊伟,高树生,等.致密储层应力敏感性及其对油田开发的影响[J].石油学报,2007,28(4):99-102.]
[5]Guo Xiao,Ren Ying,Wu Hongqin,et al.Apparent permeability model of shale gas considering stress sensitivity and adsorption[J].Lithologic Reservoirs,2015,27(4):113-116,122.[郭肖,任影,吴红琴,等.考虑应力敏感和吸附的页岩表观渗透率模型[J].岩性油气藏,2015,27(4):113-116,122.]
[6]Wen Xushe,Chen Junbin,Zhang Jie,et al.Apparent permeability for gas transport in nanopores of organic shale[J].Advanced Materials Research,2015,3702:2305-2309.
[7]Zhang Rui,Ning Zhengfu,Yang Feng,et al.A laboratory study of the porosity-permeability relation ships of shale and sandstone under effective stress[J].International Journal of Rock Mechanics & Mining Sciences ,2016,81:19-27.
[8]Zhang Rui,Ning Zhengfu,Yang Feng,et al.Impacts of nanopore structure and elastic properties on stress-dependent permeability of gas shales[J].Journal of Natural Gas Science and Engineering,2015,26(26):1663-1672.
[9]Chen Dong,Pan Zhejun,Ye Zhihui,et al.A unified permeability and effective stress relationship for porous and ractured reservoir rocks[J].Journal of Natural Gas Science and Engineering,2016,29(29):401-402.
[10]Zhang Rui,Ning Zhengfu,Yang Feng,et al.Experimental study on microscopic pore structure controls on shale permeability under compaction process[J].Natural Gas Geoscience,2014,25(8):1284-1289.[张睿,宁正福,杨峰,等.微观孔隙结构对页岩应力敏感影响的实验研究[J].天然气地球科学,2014,25(8):1284-1289.]
[11]Guo Wei,Xiong Wei,Gao Shusheng,et al.Experiment study on stress sensitivity of shale gas reservoirs[J].Special oil and gas reservoirs,2012,19(1):99-101,144.[郭为,熊伟,高树生,等.页岩气藏应力敏感效应实验研究[J].特种油气藏,2012,19(1):99-101,144.]
[12]Zhao Licui,Gao Wanglai,Zhao Li,et al.Experiment study on stress sensitivity and the influence factor analysis of shale gas reservoirs[J].Journal of Chongqing University of Science and Technology:Natural Science,2013,15(3):48-51.[赵立翠,高旺来,赵莉,等.页岩储层应力敏感性实验研究及影响因素分析[J].重庆科技学院学报:自然科学版,2013,15(3):48-51.]
[13]He Jingang,Kang Yili,You Lijun,et al.Effects of mineral composition and microstructure on stress sensitivity of mudrocks[J].Natural Gas Geoscience,2012,23(1):133-138.[何金钢,康毅力,游利军,等.矿物成分和微结构对泥质岩储层应力敏感性的影响[J].天然气地球科学,2012,23(1):133-138.]
[14]Jones S C.A technique for faster pulse-decay permeability measurements in tight rocks[J].SPE Formation Evaluation,1997,12(1):19-26.
[15]Walsh J B.Effect of pore pressure and confining pressure on fracture permeability[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1981,18(5):429-435.
[16]Gangi A F.Variation of whole and fractured porous rock permeability with confining pressure[J].
International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1978,15(5):249-257.
[17]Kassis Sarah,Conocophillips,Sondergeld C H.Fracture Permeability of Gas Shale:Effects of Roughness,Fracture Offset,Proppant,and Effective Stress[C]//CPS/SPE International Oil & Gas Conference and Exhibition,Beijing,China:Society of Petroleum Engineers,2010:1-11.
[18]Cho Y,Ozkan E,Apaydin O G.Pressure dependent natural fracture permeability in shale and its effect on shale gas well production[J].SPE Reservoir Evaluation & Engineering,2013,16(2) :216-228
[19]McKee C R,Bumb A C,Koenig R A.Stress-dependent permeability and porosity of coal and other geologic formations[J].SPE Formation Evaluation,1988,3(1):81-91.
[20]David C,Wong T,Zhu W,et al.Laboratory measurement of compaction-induced permeability change in porous rocks:Implications for the generation and maintenance of pore pressure excess in the crust[J].Pure & Applied Geophysics,1994,143(1):425-456.
[21]Seidle J P,Jeansonne M W,Erickson D J.Application of matchstick geometry to stress dependent permeability in coals[C]//SPE Rocky Mountain Regional Meeting,Wyoming,1992:1-11.
[22]Chen Dong,Pan Zhejun,Ye Zhihui.Dependence of gas shale fracture permeability on effective stress and reservoir pressure:Model match and insights[J].Fuel,2015,139:383-392.
[23]Zhang Rui,Ning Zhengfu,Zhang Haishan,et al.New insights and discussion on stress sensitivity of fractured tight reservoir[J].Natural Gas Geoscience,2016,27(5):918-923.[张睿,宁正福,张海山,等.裂缝性致密储层应力敏感机理新认识[J].天然气地球科学,2016,27(5):918-923.]
[24]Kwon O,Kronenberg A K,Gangi A F,et al.Permeability of wilcox shale and its effective pressure law[J].Journal of Geophysical Research,2001,106(B9):19339-19353.

[1] 任茜莹,代金友,穆中奇. 气藏采收率影响因素研究与启示——以靖边气田A井区为例[J]. 天然气地球科学, 2018, 29(9): 1376-1382.
[2] 程鸣,傅雪海,张苗,程维平,渠丽珍. 沁水盆地古县区块煤系“三气”储层覆压孔渗实验对比研究[J]. 天然气地球科学, 2018, 29(8): 1163-1171.
[3] 游利军,王哲,康毅力,张杜杰. 致密砂岩孔渗对盐析的响应实验研究[J]. 天然气地球科学, 2018, 29(6): 866-872.
[4] 孟凡坤,雷群,徐伟,何东博,闫海军,邓惠. 应力敏感碳酸盐岩复合气藏生产动态特征分析[J]. 天然气地球科学, 2018, 29(3): 429-436.
[5] 李阳,李树同,牟炜卫,闫灿灿. 鄂尔多斯盆地姬塬地区长6段致密砂岩中黏土矿物对储层物性的影响[J]. 天然气地球科学, 2017, 28(7): 1043-1053.
[6] 张涛,李相方,王永辉,石军太,杨立峰,孙政,杨剑,张增华. 页岩储层特殊性质对压裂液返排率和产能的影响[J]. 天然气地球科学, 2017, 28(6): 828-838.
[7] 王妍妍,王卫红,胡小虎,刘华,郭艳东. 诱导渗透率场中压裂水平井压力动态分析模型[J]. 天然气地球科学, 2017, 28(5): 785-791.
[8] 崔亚星,熊伟,胡志明,左罗,高树生. 等温条件下页岩储层视渗透率随压力变化规律研究[J]. 天然气地球科学, 2017, 28(4): 514-520.
[9] 倪小明, 李志恒,王延斌,吴建光. 沁水盆地中部断层发育区煤层气开发有利块段优选[J]. 天然气地球科学, 2017, 28(4): 602-610.
[10] 王志荣,贺平,郭志伟,陈玲霞,徐培远. 水力压裂条件下“三软”煤层压裂渗透模型及应用[J]. 天然气地球科学, 2017, 28(3): 349-355.
[11] 赵军,范家宝,代新雲,何胜林,张海荣. 复杂非均质储层渗透率模型的分类评价方法[J]. 天然气地球科学, 2017, 28(2): 183-188.
[12] 何岩峰,成景烨,窦祥骥,王相,唐波. 页岩天然裂缝网络渗透率模型研究[J]. 天然气地球科学, 2017, 28(2): 280-286.
[13] 刘卫群,王冬妮,苏强. 基于页岩储层各向异性的双重介质模型和渗流模拟[J]. 天然气地球科学, 2016, 27(8): 1374-1379.
[14] 曹成,李天太,王晖,许小强,高潮. 页岩渗透率测试方法研究与应用[J]. 天然气地球科学, 2016, 27(3): 503-512.
[15] 陶士振,李昌伟,黄纯虎,曾溅辉,张响响,杨春,高晓辉,公言杰. 煤系致密砂岩气运聚动力与二维可视化物理模拟研究——以川中地区三叠系须家河组致密砂岩气为例[J]. 天然气地球科学, 2016, 27(10): 1767-1777.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王瑞,张宁生,刘晓娟,吴新民,闫健. 页岩对甲烷的吸附影响因素及吸附曲线特征[J]. 天然气地球科学, 2015, 26(3): 580 -591 .
[2] 曹成,李天太,王晖,许小强,高潮. 页岩渗透率测试方法研究与应用[J]. 天然气地球科学, 2016, 27(3): 503 -512 .
[3] 朱维耀,马东旭,朱华银,安来志,李兵兵. 页岩储层应力敏感性及其对产能影响[J]. 天然气地球科学, 2016, 27(5): 892 -897 .
[4] 张睿,宁正福,张海山,谢佥. 裂缝性致密储层应力敏感机理新认识[J]. 天然气地球科学, 2016, 27(5): 918 -923 .
[5] 姜凤光,王小林,陈志海. 二氧化碳侵入前油气藏流体性质定量分析[J]. 天然气地球科学, 2017, 28(3): 488 -493 .
[6] 陈跃,汤达祯,田霖,马东民,方世跃,陈茜. 煤变质程度对中低阶煤储层孔裂隙发育的控制作用[J]. 天然气地球科学, 2017, 28(4): 611 -621 .
[7] 张宫,冯庆付,武宏亮,王克文,冯周. 基于核磁T2谱对数均值差异的碳酸盐岩气水识别[J]. 天然气地球科学, 2017, 28(8): 1243 -1249 .