天然气地球科学 doi: 10.11764/j.issn.1672-1926.2017.05.005

• 天然气地质学 • 上一篇    下一篇

陆相湖盆层序地层格架内有机质发育及控制因素分析——以中上扬子建南地区侏罗系东岳庙段为例

刘英杰,黄传炎,岳家恒,郭来源   

  1. 中国地质大学(武汉)构造与油气资源教育部重点实验室,湖北 武汉 430074
  • 收稿日期:2016-12-30 修回日期:2017-05-15 出版日期:2017-06-10 发布日期:2017-06-10
  • 通讯作者: 黄传炎(1976-),男,湖北松滋人,副教授,博士,主要从事沉积学、层序地层学、盆地分析研究. E-mail:cyhuang76@163.com.
  • 作者简介:刘英杰(1994-),男,江西赣州人,硕士研究生,主要从事层序地层学与非常规油气地质研究. E-mail:2779771631@qq.com.

Analysis of organic matter characteristics and their controlling factors in the sequence stratigraphic framework:Case study of Jurassic Dongyuemiaomember of the Ziliujin Formation in Jiannan area,Upper and Middle Yangtze Region

Liu Ying-jie,Huang Chuan-yan,Yue Jia-heng,Guo Lai-yuan   

  1. Key Laboratory of Tectonics and Petroleum Resources of the Ministry of Education,China University of Geosciences,Wuhan 430074,China
  • Received:2016-12-30 Revised:2017-05-15 Online:2017-06-10 Published:2017-06-10

摘要:

在层序地层学和沉积学研究的基础上,通过相关性分析,优选出Sr/V、Cd/Ca、Zr/Rb 3组元素地球化学指标,分别对中上扬子建南地区侏罗系自流井组东岳庙段的古气候条件、古生产力、以及古水动力条件开展分析,探讨研究区目的层有机质在层序地层格架内发育的成因机制。研究表明:与其他湖盆沉积的有机质发育特征相比,中上扬子建南地区侏罗系东岳庙段的湖相沉积在层序地层格架内有机质发育规律具有独特性,其低位体系域有机质非常发育,而湖扩体系域有机质较发育,高位体系域有机质最不发育,在沉积微相中,低位体系域浅湖亚相沉积有机质比低位体系域滨湖亚相沉积中的有机质更发育;而造成有机质差异性发育的主要控制因素是古生产力和有机质的保存环境。

关键词: 有机质发育控制因素, 层序地层格架, 沉积环境, 自流井组东岳庙段, 建南地区

Abstract:

Based on three groups of elemental geochemical indicators(Sr/V,Cd/Ca,Zr/Rb),the paper analyzed the paleoclimate,paleoproductivity and hydrodynamic condition,and explained genetic mechanism of organic matter within the sequence stratigraphic framework of Jurassic Dongyuemiao Member of the Ziliujin Formation in Jiannan area of the Upper and Middle Yangtze Region.The study results show that it has own unique characteristics compared with other lacustrine basin.The organic matter of the low-stand system tract(LST) was the richest,that of the lake expand system tract(EST) was relatively rich,while that of the high-stand systems tract(HST) was poor.The organic matter of LST shallow lake facies is richer than that of LST lakeshore.The main controlling factors of the differential characteristics are paleoproductivity and preservation environment of organic matter.

Key words: Controlling factors of organic matter, Sequence stratigraphic framework, Depositional Paleoenvironment, The Dongyuemiao member of Ziliujin Formation,Jurassic, Jiannan area

中图分类号: 

  • TE121.3

[1]Rimmer S M,Thompson J A,Goodnight S A,et al.Multiple controls on the preservation of organic matter in Devonian & ndash;Mississippian marine black shales:Geochemical and petrographic evidence[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2004,215:125-154.
[2]Dymond J,Suess E,Lyle M.Barium in the deep-sea sediment:A geochemical proxy for paleoproductivity[J].Paleoceanography,1992,7(3):391.
[3]McManus J,Berelson W M,Klinkhammer G P,et al.Geochemistry of barium in marine sediments:Implications for its use as a paleoproxy[J].Geochimica et Cosmochimica Acta,1998,62(21/22):3453-3473.
[4]Xiong Xiaohui,Xiao Jiafei.Geochemical indicators of sedimentary environments:A summary[J].Earth & Environment,2011,39(3):405-414.[熊小辉,肖加飞.沉积环境的地球化学示踪[J].地球与环境,2011,39(3):405-414.]
[5]Creaney S,Passey Q R.Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphy framework[J].AAPG Bulletin,1993,77(3):386-401.
[6]Sageman B B,Gardner M H,Armentrout J M,et al.Stratigraphic hierarchy of organic carbon rich siltstones in deep-water facies,Brushy Canyon Formation(Guadalupian),Delaware Basin,West Texas[J].Geology,1998,26(5):451-454.
[7]Duarte L V,Silva R L,Oliveira L C V,et al.Organic-rich facies in the Sinemurian and Pliensbachian of the Lusitanian Basin,Portugal:Total organic carbon distribution and relation to transgressive-regressive facies cycles[J].Geologica Acta,2010,83(3):325-340.
[8]Creaney S,Passey Q R.Recurring patterns of total organic-carbon and source rock quality within a sequence stratigraphic framework[J].AAPG Bulletin-American Association of Petroleum Geologists,1993,77(3):386-401.
[9]Wignall P B,Maynard J R.The sequence stratigraphy of transgressive black shales[J].Geology,1993,33:35-47.
[10]Shang F,Liu Z J,Xie X N,et al.Organic matter accumulation mechanisms of shale series in He-third member of Eocene Hetaoyuan Formation,Biyang Depression,eastern China[J].Petroleum Science & Technology,2015,33(13/14):1434-1442.
[11]Shang Fei,Liu Zhengjun,Xie Xinong,et al.Geochemical characteristics of organic-rich shales of He-3 member of Hetaoyuan Formationin Biyang Sag[J].Xinjiang Petroleum Geology,2015,36(1):42-47.[尚飞,刘峥君,解习农,等.泌阳凹陷核三段主力富有机质页岩层地球化学特征[J].新疆石油地质,2015,36(1):42-47.]
[12]Gu Zhongan,Zheng Rongcai,Wang Liang,et al.Characteristics of shale reservoir of Da'anzhai segment in Fuling area,eastern Chongqing[J].Lithologic Reservoirs,2014,26(2):67-73.[顾忠安,郑荣才,王亮,等.渝东涪陵地区大安寨段页岩储层特征研究[J].岩性油气藏,2014,26(2):67-73.]
[13]Wei Y,Zhang Z,He W,et al.Evolution of sedimentary basins in the Upper Yangtze during Mesozoic[J].Earth Science,2014,39(8):1065-1078.
[14]Liu S,Steel R,Zhang G.Mesozoic sedimentary basin development and tectonic implication,northern Yangtze block,eastern China:Record of continent & ndash;continent collision[J].Journal of Asian Earth Sciences,2005,25(1):9-27.
[15]Yokoyama M,Liu Y,Halim N,et al.Paleomagnetic study of Upper Jurassic rocks from the Sichuan Basin:Tectonic aspects for the collision between the Yangtze block and the north China block[J].Earth & Planetary Science Letters,2001,193(3-4):273-285.
[16]Straeten C A V,Brett C E,Sageman B B.Mudrock sequence stratigraphy:A multi-proxy(sedimentological,paleobiological and geochemical) approach,Devonian Appalachian Basin[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2011,304(1-2SI):54-73.
[17]Roy P D,Caballero M,Lozano R,et al.Geochemical record of Late Quaternary paleoclimate from lacustrine sediments of paleo-lake San Felipe,western Sonora Desert,Mexico[J].Journal of South American Earth Sciences,2010,29(3):586-596.
[18]Taylor F,Whitehead J,Domack E.Holocene paleoclimate change in the Antarctic Peninsula:Evidence from the diatom,sedimentary and geochemical record[J].Marine Micropaleontology,2001,41(1):25-43.
[19]Ayling B F,Chappell J,Mcculloch M T,et al.High-resolution paleoclimate of the MIS 11 interglacial using geochemical proxies in giant Tridacna clams[J].Geochmica Et Cosmochimica Acta,2006,70(18):A26.
[20]Ayling B F.Seasonal paleoclimates of the MIS 5E,9 and 11 interglacials,using geochemical proxies in Porites and Tridacna[J].Australian National University,2012,41(1):25-43..
[21]Kandasamy S.Reconstruction of East Asian Paleoclimate:role of solid-phase geochemical proxies[J].Actas Inageq,2007,29(3):586-596.
[22]Van Soelen E E,Brooks G,Lammertsma E,et al.Evaluation of organic geochemical and micropaleontological proxies for Holocene paleoclimate reconstructions in Tampa Bay,Florida[C].EGU General Assembly Conference,2009:56-60.
[23]Arsairai B,Wannakomol A,Feng Q,et al.Paleoproductivity and Paleoredox condition of the Huai Hin Lat Formation in northeastern Thailand[J].Journal of Earth Science,2016,27(3):350-364.
[24]Tenger,Liu W,Yongchang X U,et al.Comprehensive geochemical identification of highly evolved marine hydrocarbon source rocks:Organic matter,paleoenvironment and development of effective hydrocarbon source rocks[J].Acta Geochimica,2006,25(4):333-340.
[25]Li Y,Fan T,Zhang J,et al.Impact of paleoenvironment,organic paleoproductivity,and clastic dilution on the formation of organic-rich shales:A case study about the Ordovician-Silurian black shales,southeastern Chongqing,south China[J].Arabian Journal of Geosciences,2015,8(12):10225-10239.
[26]Tenger,Liu W,Xu Y,et al.Comprehensive geochemical identification of highly evolved marine carbonate rocks as hydrocarbon-source rocks as exemplified by the Ordos Basin[J].Science China:Earth Sciences,2006,49(4):384-396.
[27]Liu L,Chen J,Ji J,et al.Comparison of paleoclimatic change from Zr/Rb ratios in Chinese loess with marine isotope records over the 2.6–1.2 Ma BP interval[J].Geophysical Research Letters,2004,31(15):383-402.
[28]Bos X,Rydberg J,Martinez-Cortizas A,et al.Evaluation of conservative lithogenic elements(Ti,Zr,Al,and Rb) to study anthropogenic element enrichments in lake sediments[J].Journal of Paleolimnology,2011,46(1):75-87.
[29]Chen Y,Chen J,Liu L W,et al.Use of Zr/Rb ratios in Chinese loess sequences to trace paleo-winter monsoon winds strength[J].Geochimica Et Cosmochimica Acta,2005,69(10):A261-A261.
[30]Soreghan G S,Benison K C,Foster T M,et al.The paleoclimatic and geochronologic utility of coring red beds and evaporites:A case study from the RKB core(Permian,Kansas,USA)[J].International Journal of Earth Sciences,2014,103(6):1-15.

[1] 张昭丰, 王良军, 张立强, 黎承银. 川东南回龙场地区小河坝组砂岩元素特征及古环境意义[J]. 天然气地球科学, 2020, 31(9): 1239-1249.
[2] 游君君, 杨希冰, 雷明珠, 梁刚, 汪紫菱. 珠江口盆地珠三坳陷不同沉积环境下烃源岩和原油中长链三环萜烷、二环倍半萜烷分布特征及地球化学意义[J]. 天然气地球科学, 2020, 31(7): 904-914.
[3] 张静非, 赵继展, 陈冬冬, 李树刚, 林海飞. 鄂尔多斯盆地彬长矿区含H2S煤层沉积环境特征及成因分析[J]. 天然气地球科学, 2020, 31(1): 100-109.
[4] 王岚, 曾雯婷, 夏晓敏, 周海燕, 毕赫, 商斐, 周学先. 松辽盆地齐家—古龙凹陷青山口组黑色页岩岩相类型与沉积环境[J]. 天然气地球科学, 2019, 30(8): 1125-1133.
[5] 钟洪洋, 张道勇, 肖明国, 徐耀辉, . 洞庭盆地第四系极浅层天然气成因类型及地质意义[J]. 天然气地球科学, 2019, 30(3): 361-369.
[6] 何龙, 王云鹏, 陈多福, 王钦贤, 王成. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学, 2019, 30(2): 203-218.
[7] 韩盛博,李伍. 上扬子区龙马溪组页岩中黄铁矿成因[J]. 天然气地球科学, 2019, 30(11): 1608-1618.
[8] 梁兴,陈科洛,张廷山,张朝,张介辉,舒红林. 沉积环境对页岩孔隙的控制作用[J]. 天然气地球科学, 2019, 30(10): 1393-1405.
[9] 王涛利,郝爱胜,陈清,李,王庆涛,卢鸿,刘大永. 中扬子宜昌地区五峰组和龙马溪组页岩发育主控因素[J]. 天然气地球科学, 2018, 29(5): 616-631.
[10] 申宝剑,秦建中,腾格尔,潘安阳,仰云峰,边立曾. 中国南方海相烃源岩中细菌状化石识别[J]. 天然气地球科学, 2018, 29(4): 510-517.
[11] 曹涛涛,邓模,宋之光,刘光祥,黄俨然,Andrew Stefan Hursthouse. 黄铁矿对页岩油气富集成藏影响研究[J]. 天然气地球科学, 2018, 29(3): 404-414.
[12] 王媛,林畅松,李浩,孙彦达,何海全,王清龙,姬牧野,张曼莉. 高频层序地层格架中碳酸盐岩成岩作用研究——以哈萨克斯坦Marsel探区下石炭统谢尔普霍夫阶为例[J]. 天然气地球科学, 2018, 29(1): 28-41.
[13] 王钊,周新平,李树同,李士祥,邱军利,张文选,王琪. 鄂尔多斯盆地吴起地区长9段和长10段原油地球化学特征对比[J]. 天然气地球科学, 2017, 28(9): 1385-1395.
[14] 郭佳佳,孙国强,龙国徽,管斌,康健,夏维民,陈波,史基安. 柴达木盆地北缘冷湖五号构造下侏罗统沉积—成岩环境分析[J]. 天然气地球科学, 2017, 28(12): 1839-1845.
[15] 王静彬,高志前,康志宏,杨有星,卫端,秦念通. 塔里木盆地塔西南坳陷和田凹陷普司格组烃源岩沉积环境及有机地球化学特征[J]. 天然气地球科学, 2017, 28(11): 1723-1734.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[2] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[3] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[4] 廖成君. VSP技术在锦612复杂断块油藏开发部署研究中的应用[J]. 天然气地球科学, 2005, 16(1): 117 -122 .
[5] 杜乐天;. 地球的5个气圈与中地壳天然气开发[J]. 天然气地球科学, 2006, 17(1): 25 -30 .
[6] 周世新;邹红亮;解启来;贾星亮;. 沉积盆地油气形成过程中有机-无机相互作用[J]. 天然气地球科学, 2006, 17(1): 42 -47 .
[7] 曹华;龚晶晶;汪贵锋;. 超压的成因及其与油气成藏的关系[J]. 天然气地球科学, 2006, 17(3): 422 -425 .
[8] 杜乐天. 国外天然气地球科学研究成果介绍与分析-----以索科洛夫的著作为主线[J]. 天然气地球科学, 2007, 18(1): 1 -18 .
[9] 孔庆芬,王可仁. 鄂尔多斯盆地西缘奥陶系烃源岩热模拟试验研究[J]. 天然气地球科学, 2006, 17(2): 187 -191 .
[10] 刘全有;刘文汇;Krooss B M;王万春;戴金星;. 天然气中氮的地球化学研究进展[J]. 天然气地球科学, 2006, 17(1): 119 -124 .