天然气地球科学

• 非常规天然气 • 上一篇    下一篇

青海省木里地区天然气水合物构造成藏机制——来自物理模拟实验的启示

吴闯1,尹宏伟1,于常青2,皮金云2,吴珍云3,汪伟1,张佳星1   

  1. 1.南京大学地球科学与工程学院,江苏 南京 210023;
    2.中国地质科学院地质研究所,北京 100037;
    3.江苏省地震局,江苏 南京 210014
  • 收稿日期:2016-11-30 修回日期:2017-03-30 出版日期:2017-05-10 发布日期:2017-05-10
  • 通讯作者: 尹宏伟(1971-),男,江西上饶人,教授,博士,主要从事构造分析及模拟研究. E-mail:hwyin@nju.edu.cn.
  • 作者简介:吴闯(1991-),男,山东菏泽人,硕士研究生,主要从事构造分析及物理模拟研究. E-mail:wuchuang1991@hotmail.com.
  • 基金资助:

    中国地质调查水合物专项项目(编号:GZHL20110313);国家自然科学基金项目(编号:41272227;41572187)联合资助.

The structural accumulation mechanism of the natural gas hydrates in Muli region of Qinghai Province:Revelation from physical simulation experiment

Wu Chuang1,Yin Hong-wei1,Yu Chang-qing2,Pi Jing-yun2,Wu Zhen-yun3,Wang Wei1,Zhang Jia-xing1   

  1. 1.School of Earth Science and Engineering,Nanjing University,Nanjing 210023,China;
    2.Institute of Geology,Chinese Academy of Geological Science,Beijing 100037,China;
    3.Jiangsu Earthquake Administration,Nanjing 210014,China
  • Received:2016-11-30 Revised:2017-03-30 Online:2017-05-10 Published:2017-05-10

摘要:

青海省木里地区,2008年钻探岩心中首次钻取天然气水合物实物样品,从而引起了地质学家们越来越多的关注。以木里地区聚乎更矿区为例,结合分析该区域的钻井资料以及断裂分布特征,发现天然气水合物的成藏分布存在一定的规律,即该区天然气水合物主要集中于一条先存深大断层F1的两侧,而邻近区域在具有相似物化条件下却并未发现天然气水合物的存在。因此在前人研究基础上,结合区域地质构造特征,设计了3组物理模拟沙箱实验,试图从构造的角度来阐述研究区天然气水合物可能的构造成藏机制及其影响因素。实验模拟结果表明,先存断层和区域滑脱层对木里地区构造演化具有明显的控制作用。先存断层属于区域性深大断裂,其在后期应力作用下再活化,形成切割地层深部的运移通道;而区域性滑脱层的分布则造成挤压应力作用下区域性薄皮滑脱断层的广泛发育,这些断裂的根部主要集中到区域性滑脱层之上,滑脱层之下地层则基本未被断裂切穿。对比分析物理模拟实验结果及研究区构造特征,结合研究区天然气水合物的分布特征,提出了木里地区天然气水合物可能的区域性“断裂运移、下生上储”成藏模式,即深部热解气沿着深大先存断层运移至冻土层下有利位置富集成藏,并在有利的物化条件下形成天然气水合物,而在研究区其他区域,深部运移通道不发育,则在浅部地层未见天然气水合物的富集成藏。

关键词: 天然气水合物, 先存断层, 滑脱层, 木里地区, 物理模拟

Abstract:

The Muli region of Qinghai Province,where natural gas hydrates were drilled and discovered in 2008,has attracted more and more attention.Taking the Juhugeng mining area as an example,drilling data and fracture distribution characteristics of the Muli region show that the distribution of natural gas hydrates accumulation has certain regularity.Natural gas hydrates are mostly distributed near a pre-existing major regional fault F1.While in the adjacent areas,no natural gas hydrates formed although these areas have similar physical and chemical condition.Based on the previous studies,combining with regional geologic and structural characteristics,we designed and ran three groups of physical sandbox experiments.We try to illustrate a possible structural mechanism and influencing factors of the accumulation pattern of natural gas hydrates in our research region.Modeling results show that the combination of pre-existing fault and detachment layer has a controlling role on structural deformation of the Muli region.Pre-existing fault is a major regional fault,which reactivates under the later regional shortening,and forms a migration channel by cutting strata from the deep strata to the shallow strata.The distribution of the regional detachment layer causes the wide development of the thin-skinned faults under the later regional shortening.These fault roots mainly located at the regional detachment layer,and nearly no faults cut through the strata under the detachment layer.By analyzing physical experimental results and the structural patterns,and the distribution characteristics of the natural gas hydrates in the research area together,we propose a possible structural accumulation pattern of natural gas hydrates in the Muli region.In this area,the natural pyrolysis gas,migrating along the fractures caused by the major regional pre-existing fault,generated in the deep strata and accumulated in the shallow strata where the favorable physical and chemical conditions can be provided.While in the other places far away from the major regional fault in the research area,no natural gas hydrates can be accumulated in the shallow strata,because the deep migration channel developed unconditionally due to the lack of major regional fault rooting to the gas source region in the deep strata.

Key words: Natural gas hydrate, Pre-existing fault, Detachment layer, Muli area, Physical simulation

中图分类号: 

  • TE122.1
[1]Makogon Y F,Holditch S A,Makogon T Y.Natural gas-hydrates:A potential energy source for the 21st Century[J].Journal of Petroleum Science and Engineering,2007,56(1-3):14-31.
[2]Huang Xia,Zhu Youhai,Wang Pingkang,et al.Hydrocarbon gas composition and origin of core gas from the gas hydrate reservoir in Qilian Mountain permafrost[J].Geological Bulletin of China,2011,30(12):1851-1856.[黄霞,祝有海,王平康,等.祁连山冻土区天然气水合物烃类气体组分的特征和成因[J].地质通报,2011,30(12):1851-1856.]
[3]Zhang Jinhua,Wei Wei,Wei Xinghua,et al. Discussion about natural gas Hydrate Formation conditions and accumulation pattern in Chinas major permafrost regions[J].China Petroleum Exploration,2013,18(5):74-78.[张金华,魏伟,魏兴华,等.我国主要冻土区天然气水合物形成条件及成藏模式探讨[J].中国石油勘探,2013,18(5):74-78.]
[4]Bu Qingtao,Hu Gaowei,Ye Yuguang,et al. Research progress in natural gas hydrate accumulation system[J].Advances in New and Renewable Energy,2015,3(6):435-443.[卜庆涛,胡高伟,业渝光,等.天然气水合物成藏体系研究进展[J].新能源进展,2015,3(6):435-443.]
[5]Li Yonghong,Ji Congwei,Shao Longyi,et al. Characteristics and accumulating model of gas hydrates in the Muli Coalfield of Qinghai Province[J].Xinjiang Geology,2013,31(2):223-227.[李永红,吉丛伟,邵龙义,等.青海木里煤田天然气水合物特征及成藏模式[J].新疆地质,2013,31(2):223-227.]
[6]Zhai Gangyi,Lu Zhenquan,Lu Hailong,et al.Gas hydrate geological system in the Qilian Mountain permafrost[J].Journal of Mineralogy and Petrology,2014,34(4):79-92.[翟刚毅,卢振权,卢海龙,等.祁连山冻土区天然气水合物成矿系统[J].矿物岩石,2014,34(4):79-92.][ZK)]
[7][KG*5/6]Li Jing,Cao Daiyong,Dou Xuqian,et al.Accumulation model of natural gas hydrate in Muli area[J].Journal of Liaoning Technical University:Natural Science,2012,31(4):484-488.[李靖,曹代勇,豆旭谦,等.木里地区天然气水合物成藏模式[J].辽宁工程技术大学学报:自然科学版,2012,31(4):484-488.]
[8]Xiao Hongping,Wu Qingbai,Lin Changsong,et al.Preliminary discussion on the spacetime coupling of natural gas hydrate accumulation elements:A case study from Kunlun Pass permafrost regions,Qinghai-Tibet Plateau[J].Natural Gas Geoscience,2016,27(10):1913-1923.[肖红平,吴青柏,林畅松,等.天然气水合物成藏要素及其时空耦合初探——以青藏高原昆仑山垭口多年冻土区为例[J].天然气地球科学,2016,27(10):1913-1923.]
[9]Yang Zhibin,Sun Zhongjun,Li Guangzhi,et al.Near-surface soil geochemistry of Muli natural gas hydrate area,Tianjun County,Qinghai Province[J].Geological Bulletin of China,2011,30(12):1883-1890.[杨志斌,孙忠军,李广之,等.青海省天峻县木里地区天然气水合物发现区浅表地球化学特征[J].地质通报,2011,30(12):1883-1890.]
[10]Lu Zhenquan,Zhu Youhai,Zhang Yongqin,et al.Study on genesis of gases from gas hydrate in the Qilian Mountain permafrost,Qinghai[J].Geoscience,2010,24(3):581-588.[卢振权,祝有海,张永勤,等.青海祁连山冻土区天然气水合物的气体成因研究[J].现代地质,2010,24(3):581-588.]
[11]Xing Xuewen,Liu Song,Zhou Hongying,et al.Geochemical behaviors of shallow soil in Muli permafrostand their significance as gas hydrate indicators[J].Oil & Gas Geology,2014,35(1):159-166.[邢学文,刘松,周红英,等.木里冻土带天然气水合物赋存区浅层土壤地球化学特征及指示意义[J].石油与天然气地质,2014,35(1):159-166.]
[12]Gong Jianming,Zhang Jian,Chen Xiaohui,et al.Hydrate accumulation conditions in Qianlian Mountain and Wuli permafrost region,Tibet Plateau[J].Journal of Oil and Gas Technology,2014,36(2):1-6.[龚建明,张剑,陈小慧,等.青藏高原祁连山与乌丽冻土区水合物成藏条件研究[J].石油天然气学报,2014,36(2):1-6.]
[13]Cheng Qingsong,Gong Jianming,Zhang Min,et al.Geochemical characteristics of hydrocarbon source rocks in the Qilian Mountain permafrost and gas sources for gas hydrate[J].Marine Geology & Quaternary Geology,2016,36(5):139-147.[程青松,龚建明,张敏,等.祁连山冻土区烃源岩地球化学特征及天然气水合物气源分析[J].海洋地质与第四纪地质,2016,36(5):139-147.]
[14]Wen Huaijun,Shao Longyi,Li Yonghong,et al.Structure and stratigraphy of the Juhugeng coal district at Muli,Tianjun County,Qinghai Province[J].Geological Bulletin of China,2011,30(12):1823-1828.[文怀军,邵龙义,李永红,等.青海省天峻县木里煤田聚乎更矿区构造轮廓和地层格架[J].地质通报,2011,30(12):1823-1828.]
[15]Xu Mingcai,Liu Jianxun,Chai Mingtao,et al.An experimental study of natural gas hydrates in the Muli region, Qinghai Province by the seismic reflection method[J].Geology and Exploration,2012,48(6):1180-1187.[徐明才,刘建勋,柴铭涛,等.青海木里地区天然气水合物反射地震试验研究[J].地质与勘探,2012,48(6):1180-1187.]
[16]Tie Zhanyuan,Li Yuankui,Teng Xianqing,et al.Advice for arrangement of gas hydrate and oil & gas exploration[J].Qinghai Petroleum,2014,32(2):1-7.[铁占元,李元奎,滕贤清,等.木里地区天然气水合物及油气勘探部署建议[J].青海石油,2014,32(2):1-7.]
[17]Sun Junfei,Sun Hongbo,Zhang Fade,et al.Structural zonality and coal hosting pattern in Muri Coalfield,Qinghai[J].Coal Geology of China,2009,21(8):9-11.[孙军飞,孙红波,张发德,等.青海木里煤田构造分带性特点及赋煤规律[J].中国煤炭地质,2009,21(8):9-11.]
[18]Feng Yimin,et al.Investigatory summary of the Qilian orogenic belt,China:History,presence and prospect[J].Aduance in Earth Science,1997,12(4):5-12.[冯益民.祁连造山带研究概况——历史、现状及展望[J].地球科学进展,1997,12(4):5-12.]
[19]Sun Hongbo,Sun Junfei,Zhang Fade,et al.Structural framework and coal basin tectonic evolution in Muri Coalfield,Qinghai[J].Coal Geology of China,2009,21(12):34-37.[孙红波,孙军飞,张发德,等.青海木里煤田构造格局与煤盆地构造演化[J].中国煤炭地质,2009,21(12):34-37.]
[20]Wu Zhenyun,Yin Hongwei,Wang Xin,et al.The structural features and formation mechanism of exposed salt diapirs in the front of fold-thrust belt,western Kuqa Depression[J].Journal of Nanjing University:Natural Sciences,2015,51(3):612-625.[吴珍云,尹宏伟,汪新,等.库车坳陷西段褶皱-冲断带前缘盐底辟构造特征及形成机制[J].南京大学学报:自然科学,2015,51(3):612-625.]
[21][KG*5/6]Wu Zhenyun,Yin Hongwei,Wang Xin,et al.Simulation of salt structure formation and evaluation of its geological significance to soil-gas accumulation:A case study of the Sudanese Red Sea rift basin[J].Acta Petrolei Sinica,2014,35(5):879-889.[吴珍云,尹宏伟,汪新,等.裂谷盆地盐构造形成演化及油气成藏地质意义——以苏丹红海裂谷盆地为例[J].石油学报,2014,35(5):879-889.]
[22]Duerto L,McClay K.The role of syntectonic sedimentation in the evolution of doubly vergent thrust wedges and foreland folds[J].Marine and Petroleum Geology,2009,26(7):1051-1069.
[23]Dooley T P,Jackson M P A,Hudec M R.Initiation and growth of salt-based thrust belts on passive margins:Results from physical models[J].Basin Research,2007,19(1):165-177.
[24]Bonini M.Deformation patterns and structural vergence in brittle-ductile thrust wedges:An additional analogue modelling perspective[J].Journal of Structural Geology,2007,29(1):141-158.
[25]Fort X,Brun J,Chauvel F.Salt tectonics on the Angolan margin,synsedimentary deformation processes[J].AAPG Bulletin,2004,88(11):1523-1544.
[26]Costa E,Vendeville B C.Experimental insights on the geometry and kinematics of fold-and-thrust belts above weak,viscous evaporitic décollement[J].Journal of Structural Geology,2002,24(11):1729-1739.
[27]Cotton J T,Koyi H A.Modeling of thrust fronts above ductile and frictional detachments:Application to structures in the Salt Range and Potwar Plateau,Pakistan[J].Geological Society of America Bulletin,2000,112(3):351-363.
[28]Ge H,Jackson M P A,Vendeville B C.Kinematics and Dynamics of Salt Tectonics Driven by Progradation[J].AAPG Bulletin,1997,81(3):398-423.
[29]Jackson M P A,Vendeville B C,Schultz Ela D D.Salt-related structures in the gulf of Mexico:A field guide for geophysicists[J].Leading Edge,1994,13(8):837-842.
[30]Yin Hongwei,Wang Zhe,Wang Xin,et al.Characteristics and mechanics of cenozoic salt-related structures in Kuqa foreland basins:Insights from physical modeling and discussion[J].Geological Journal of China Universities,2011,17(2):308-317.[尹宏伟,王哲,汪新,等.库车前陆盆地新生代盐构造特征及形成机制:物理模拟和讨论[J].高校地质学报,2011,17(2):308-317.]
[31]Marques F O,Nogueira C R.Normal fault inversion by orthogonal compression:Sandbox experiments with weak faults[J].Journal of Structural Geology,2008,30(6):761-766.
[32]Chen Jianzhou,Xu Weicheng,Xie Hailin.et al.Muli Coalfield coal accumulation[J].Journal of Qinghai University:Nature Science,2010,28(5):42-48.[陈建洲,徐维成,谢海林,等.木里煤田煤层聚积规律[J].青海大学学报:自然科学版,2010,28(5):42-48.]
[33]Duan Zhiming.Cenozoic Geological Evolution of Tanggula Mountain in the Hinterland of Qinghai-Tibetan Plateau and It Respond in Collision Effect of India-Asia Plate[D].Chengdu:Chengdu University of Technology,2005:68-70.[段志明,青藏高原腹地唐古拉山新生代地质事件及其对印—亚板块碰撞作用的响应[D].成都:成都理工大学,2005:68-70.]
[34]Xie Huiwen,Wang Chunyang,Wang Zhibin,et al.The effect of spatial distribution of basement detachment on deformation in a fold and thrust belt:An analogue modeling approach an example of west Kunlun fold-and-thrust belt[J].Geological Journal of China Universities,2012,18(4):701-710.[谢会文,王春阳,王智斌,等,基底滑脱层分布对褶皱冲断带变形影响的物理模拟研究__以塔西南西昆仑山前褶皱冲断带为例[J].高校地质学报,2012,18(4):701-710.]
[35]Li Fenqi,Wang Chengshan,Zhu Lidong,et al. The basin-range coupling under the regional compressional regimes:Examples from the Hexi Corridor Basin and North Qilian Mountains[J].Sedimentary Geology and Tethyan Geology,2002,22(4):17-25.[李奋其,王成善,朱利东,等,区域挤压体制下盆_山耦合关系探讨——以河西走廊和北祁连山为例[J].沉积与特提斯地质,2002,22(4):17-25.]
[36]Wang Chengshan,Zhu Lidong,Liu Zhifei,et al.Tectonic and sedimentary evolution of basins in the north of Qinghai-Tibet plateau and northward growing process of Qinghai-Tibet Plateau[J].Advance in Earth Sciences,2004,19(3):373-381.[王成善,朱利东,刘志飞.青藏高原北部盆地构造沉积演化与高原向北生长过程[J].地球科学进展,2004,19(3):373-381.]
[37]Hubbert M K.Theory of scale models as applied to the study of geologic structures[J].Geological Society of America Bulletin,1937,48(10):1459-1520.
[1] 翁定为,付海峰,包力庆,胥云, 梁天成,张金. 水平井平面射孔实验研究[J]. 天然气地球科学, 2018, 29(4): 572-578.
[2] 梁金强,付少英,陈芳,苏丕波,尚久靖,陆红锋,方允鑫. 南海东北部陆坡海底甲烷渗漏及水合物成藏特征[J]. 天然气地球科学, 2017, 28(5): 761-770.
[3] 艾志久,王杰. 天然气水合物分解的动力学模型研究[J]. 天然气地球科学, 2017, 28(3): 377-382.
[4] 焦伟伟,汪生秀,程礼军,罗情勇,方光建. 渝东南地区下寒武统页岩气高氮低烃成因[J]. 天然气地球科学, 2017, 28(12): 1882-1890.
[5] 刘洁,张建中,孙运宝,赵铁虎. 南海神狐海域天然气水合物储层参数测井评价[J]. 天然气地球科学, 2017, 28(1): 164-172.
[6] 付海峰,刘云志,梁天成,翁定为,卢拥军,修乃岭. 四川省宜宾地区龙马溪组页岩水力裂缝形态实验研究[J]. 天然气地球科学, 2016, 27(12): 2231-2236.
[7] 肖红平,吴青柏,林畅松,魏伟,张金华,彭涌,张鹏,张巧珍. 天然气水合物成藏要素及其时空耦合初探——以青藏高原昆仑山垭口多年冻土区为例[J]. 天然气地球科学, 2016, 27(10): 1913-1923.
[8] 宋换新,文志刚,包建平. 祁连山木里地区煤岩有机地球化学特征及生烃潜力[J]. 天然气地球科学, 2015, 26(9): 1803-1813.
[9] 朱永进,尹太举,沈安江,刘玲利,刘忠保. 鄂尔多斯盆地上古生界浅水砂体沉积模拟实验研究[J]. 天然气地球科学, 2015, 26(5): 833-844.
[10] 洪峰,姜林,郝加庆,樊阳,郑永平. 油气储集层非均质性成因及含油气性分析[J]. 天然气地球科学, 2015, 26(4): 608-615.
[11] 胡勇,李熙喆,李跃刚,徐轩,王继平,焦春燕,郭长敏. 低渗致密砂岩气藏提高采收率实验研究[J]. 天然气地球科学, 2015, 26(11): 2142-2148.
[12] 孙嘉鑫,宁伏龙,郑明明,张凌,刘天乐,周欣,蒋国盛,Chikhotkin V F. 室内沉积物中天然气水合物形成数值模拟研究[J]. 天然气地球科学, 2015, 26(11): 2172-2184.
[13] 张伟,何家雄,卢振权,苏丕波,李晓唐,刘志杰. 琼东南盆地疑似泥底辟与天然气水合物成矿成藏关系初探[J]. 天然气地球科学, 2015, 26(11): 2185-2197.
[14] 刘杰,刘江平,程飞,杨文海. 基于岩石物理方法分析青藏高原天然气水合物填充模式[J]. 天然气地球科学, 2015, 26(11): 2198-2207.
[15] 郑明明, 蒋国盛,宁伏龙,刘力,张凌,李实,张可,Chikhotkin V.F.. 模拟冻土区水合物地层骨架的人造岩心实验研究[J]. 天然气地球科学, 2014, 25(7): 1120-1126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!