天然气地球科学

• 非常规天然气 • 上一篇    下一篇

煤层气井产水影响因素及类型研究——以沁冰盆地柿庄南区块为例

朱学申,梁建设,柳迎红,王存武,廖夏,郭广山,吕玉民   

  1. 中海油研究总院新能源研究中心,北京 100028
  • 收稿日期:2016-07-25 修回日期:2017-03-30 出版日期:2017-05-10 发布日期:2017-05-10
  • 作者简介:朱学申(1987-),男,河南平顶山人,工程师,硕士,主要从事煤层气地质勘探与开发评价工作. E-mail:zhuxsh3@cnooc.com.cn.
  • 基金资助:

    中国海洋石油总公司科技项目(编号:CNOOC-KY-125ZDXM-00-ZY-01-15);中国海油科技攻关资助项目(编号:YXKY-2015-ZY-08)联合资助.

Influencing factor and type of water production of CBM wells: Case study of Shizhuangnan block of Qinshui Basin

Zhu Xue-shen,Liang Jian-she,Liu Ying-hong,Wang Cun-wu,Liao Xia,Guo Guang-shan,Lü Yu-min   

  1. CNOOC Research Institute New Energy Research Center,Beijing 100028,China
  • Received:2016-07-25 Revised:2017-03-30 Online:2017-05-10 Published:2017-05-10

摘要:

为了探讨煤层气井产水的来源,以柿庄南区块为研究对象,重点分析了煤层气井产水影响因素,通过提取典型日产水量与日产气量的指标,分析柿庄南区块X-1井区的产水特征。研究表明:①外源水是造成煤层气井高产水的主要原因,含煤岩系中的孔_裂隙系统、断层及压裂缝为水源提供了运移通道;②柿庄南区块X-1井区煤层气井典型日产水量与典型日产气量具有明显的负相关关系,排采煤层内源水的煤层气井典型日产水量主要为2~7m3/d,而排采外源水的煤层气井典型日产水量7m3/d以上,其中43.8%高产水井典型日产水量大于14m3/d,难以有效降低煤储层压力,制约煤层气井的产气潜力;③基于对煤层气井产水来源和补给通道的分析,提出了构造低幅汇水型、天然裂隙(断层)导通型、自然天窗渗透型、岩溶陷落柱导水型和压裂造缝沟通型等5种产水类型,指明了各种产水类型的识别和预测方法,为煤层气井产水量的预测和高效排采制度的制定提供依据。

关键词: 柿庄南, 煤层气, 影响因素, 产水类型

Abstract:

Shizhuangnan block was taken as a case study to examine the water sources of CBM wells with high water production.After analyzing the relationship between typical daily water and gas production data from 58 producing wells in the X-1 well  area of Shizhuangnan block,some controlling factors of the CBM wells with high water production were discussed,and some characteristics of water productions started emerging.Some preliminary conclusions are proposed as follows:(1)Water production of CBM wells can be generally sourced from “Syngenic” and “Allogenic” water;Allogenic water is the main cause of high water production of CBM wells,and the pore-fractures networks,faults and fractures in the coal-bearing formation provide suitable migration pathways for such water production.(2)A significant negative correlation between typical daily water production and typical daily gas production appears to exist,at least from some wells in the study area.The typical daily water production with main syngenic water in the coalbed is commonly 2-7m3/d,in contrast other wells with main water sourced from allogenic water is typically greater than 7m3/d,with 43.8% of such wells producing more than 14m3/d.The high water production prevents lowering coal reservoir pressure which in turn restricts the increase of gas production of such CBM wells.(3)Based on the analysis of water sources and recharge paths,five water production types are proposed,and the identification and prediction methods of high water yield are also present which can provide a basis for the prediction of water production in the field.

Key words: Shizhuangnan block, CBM, Influence factor, Type of water production

中图分类号: 

  • TE132.2

[1]Ye Jianping,Wu Qiang,Wang Zihe.Controlled characteristics of hydrogeological conditions on the coalbed methane migration and accumulation[J].Journal of China Coal Society,2001,26(5):459-462.[叶建平,武强,王子和.水文地质条件对煤层气赋存的控制作用[J].煤炭学报,2001,26(5):459-462.]
[2]Liu Honglin,Li Jingming,Wang Hongyan,et al.Different effects of hydrodynamic condition on coalbed gas accumulation[J].Natural Gas Industry,2006,26(3):35-37.[刘洪林,李景明,王红岩,等.水动力对煤层气成藏的差异性研究[J].天然气工业,2006,26(3):35-37.]
[3]Qin Shengfei,Song Yan,Tang Xiuyi,et al.The influence on coalbed gas content by hydrodynamics-the stagnant groundwater controlling[J].Natural Gas Geoscience,2005,16(2):149-152.[秦胜飞,宋岩,唐修义,等.水动力条件对煤层气含量的影响——煤层气滞留水控气论[J].天然气地球科学,2005,16(2):149-152.]
[4]Song Yan,Qin Shengfei,Zhao Mengjun.Two key geological factors controlling the coalbed methane reservoirs in China[J].Natural Gas Geoscience,2007,18(4):545-552.[宋岩,秦胜飞,赵孟军.中国煤层气成藏的两大关键地质因素[J].天然气地球科学,2007,18(4):545-552.]
[5]Zhou Zhicheng,Wang Nianxi,Duan Chunsheng.Action ofcoalbed water in the exploration and development of coalbed gas[J].Natural Gas Industry,1999,19(4):23-26.[周志成,王念喜,段春生.煤层水在煤层气勘探开发中的作用[J].天然气工业,1999,19(4):23-26.][ZK)]
[6][ZK(3#]Wang Miji,Kang Yongshang,Mao Delei,et al.Dewatering-induced local hydrodynamic field models and their significance to CBM production:A case study from a coalfield in the southeastern margin of the Ordos Basin[J].Natural Gas Industry,2013,33(7):57-62.[王密计,康永尚,毛得雷,等.煤层气排采局部水动力场模式及其意义__以鄂尔多斯盆地东南缘为例[J].天然气工业,2013,33(7):57-62.]
[7]Liu Zhidi,Zhao Jingzhou,Xu Fengyin,et al.Analysis on water sources in a CBM gas well and forecast of water yield quantity:A case study from the Hancheng Mine at the eastern edge if the Ordos Basin[J].Natural Gas Industry,2014,34(8):61-67.[刘之的,赵靖舟,徐凤银,等.煤层气井排采水源分析及出水量预测——以鄂尔多斯盆地东缘韩城矿区为例[J].天然气工业,2014,34(8):61-67.]
[8]Zhang Songhang,Tang Shuheng,Li Zhongcheng,et al.The hydrochemical characteristics and ion changes of the coproduced water:Taking Shizhuangnan block,south of the Qinshui Basin as an Example[J].Journal of China University of Mining & Technology,2015,44(2):258-265.[张松航,唐书恒,李忠城,等.煤层气井产出水化学特征及变化规律——以沁水盆地柿庄南区块为例[J].中国矿业大学学报,2015,44(2):258-265.]
[9]Wei Mingming,Ju Yiwen.Chemical characteristics and origin of produced waters from coalbed gasfield in the southern of Qinshui Basin[J].Journal of China Coal Society,2015,40(3):629-635.[卫明明,琚宜文.沁水盆地南部煤层田产出水地球化学特征及其来源[J].煤炭学报,2015,40(3):629-634.]
[10]Li Qing,Zhao Xinglong,Xie Xianping,et al.Causes of high water yield from CBM wells in Yanchuannan block and draining measures[J].Petroleum Drilling Techniques,2013,41(6):95-99.[李清,赵兴龙,谢先平,等.延川南区块煤层气井高产水成因分析及排采对策[J].石油钻探技术,2013,41(6):95-99.]
[11]Liu Huihu,Sang Shuxun,Li Mengxi,et al.Discrimination of source of formation water during CBM drainage with the multi-well pattern and its significance[J].Natural Gas Industry,2015,42(1):29-34.[刘会虎,桑树勋,李梦溪,等.煤层气群井排采地层水来源判识及其意义[J].天然气工业,2015,42(1):29-34.]
[12]Liu Baomin.Study Onhydrogeology Control and Method of Potential Productivity Evaluation During Coalbed Methane Exploitation[D].Beijing:China University of Mining & Technology(Beijing),2012:1-115.[刘保民.煤层气开采的水文地质控制和产能潜力评价方法研究[D].北京:中国矿业大学(北京),2012:1-115.]

[1] 任茜莹,代金友,穆中奇. 气藏采收率影响因素研究与启示——以靖边气田A井区为例[J]. 天然气地球科学, 2018, 29(9): 1376-1382.
[2] 吴丛丛,杨兆彪,孙晗森,张争光,李庚,彭辉. 云南恩洪向斜西南区垂向流体能量特征及有序开发建议[J]. 天然气地球科学, 2018, 29(8): 1205-1214.
[3] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[4] 段毅,吴应忠,赵阳,曹喜喜,马兰花. 草本沼泽泥炭加水热解产物烃类气体氢同位素特征[J]. 天然气地球科学, 2018, 29(3): 305-310.
[5] 左罗,蒋廷学,罗莉涛,吴魏,赵昆. 基于渗流新模型分析页岩气流动影响因素及规律[J]. 天然气地球科学, 2018, 29(2): 296-304.
[6] 单衍胜,毕彩芹,迟焕鹏,王福国,李惠. 六盘水地区杨梅树向斜煤层气地质特征与有利开发层段优选[J]. 天然气地球科学, 2018, 29(1): 122-129.
[7] 赵一民,陈强,常锁亮,田忠斌,桂文华. 基于边界要素二分的煤层气封存单元分类与评估[J]. 天然气地球科学, 2018, 29(1): 130-139.
[8] 张洲,王生维,周敏. 基于构造裂隙填图技术的煤储层裂隙发育特征预测与验证[J]. 天然气地球科学, 2017, 28(9): 1356-1362.
[9] 王玫珠,王勃,孙粉锦,赵洋,丛连铸,杨焦生,于荣泽,罗金洋,周红梅. 沁水盆地煤层气富集高产区定量评价[J]. 天然气地球科学, 2017, 28(7): 1108-1114.
[10] 郭广山,柳迎红,张苗,吕玉民. 沁水盆地柿庄南区块排采水特征及其对煤层气富集的控制作用[J]. 天然气地球科学, 2017, 28(7): 1115-1125.
[11] 马东民,李沛,张辉,李卫波,杨甫. 长焰煤中镜煤与暗煤吸附/解吸特征对比[J]. 天然气地球科学, 2017, 28(6): 852-862.
[12] 倪小明, 李志恒,王延斌,吴建光. 沁水盆地中部断层发育区煤层气开发有利块段优选[J]. 天然气地球科学, 2017, 28(4): 602-610.
[13] 郭晨,夏玉成,卢玲玲,任亚平. 黔西比德—三塘盆地多层叠置独立含煤层气系统发育规律与控制机理[J]. 天然气地球科学, 2017, 28(4): 622-632.
[14] 申建,张春杰,秦勇,张兵. 鄂尔多斯盆地临兴地区煤系砂岩气与煤层气共采影响因素和参数门限[J]. 天然气地球科学, 2017, 28(3): 479-487.
[15] 郭晓龙,李璇,代春萌,边海军,许旭华,许晶. 煤层气地球物理预测方法[J]. 天然气地球科学, 2017, 28(2): 287-295.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!