天然气地球科学

• 非常规天然气 • 上一篇    下一篇

天然气水合物分解的动力学模型研究

艾志久,王杰   

  1. 西南石油大学机电工程学院,四川 成都 610500
  • 收稿日期:2016-11-09 修回日期:2017-01-08 出版日期:2017-03-10 发布日期:2017-03-10
  • 通讯作者: 王杰(1990-),男,四川资阳人,硕士,主要从事天然气水合物研究. E-mail:611wangjie@sina.com.
  • 作者简介:艾志久(1954-),男,河北昌黎人,教授,博士生导师,主要从事石油与天然气研究. E-mail:aizhijiu123@vip.sina.com.
  • 基金资助:

    石油天然气装备教育部重点实验室开放基金资助项目(编号:OGE201403-28)资助.

Study on kinetic model of natural gas hydrate dissociation

Ai Zhi-jiu,Wang Jie   

  1. Institute of Electrical and Mechanical Engineering,Southwest Petroleum University,Chengdu 610500,China
  • Received:2016-11-09 Revised:2017-01-08 Online:2017-03-10 Published:2017-03-10

摘要:

基于扩散机理和化学动力学理论,提出了天然气水合物分解成冰和气体的动力学模型。该模型考虑了天然气水合物分解过程的本征动力学和冰层的孔隙结构。在准稳态近似框架中,动力学模型可以解析求解得到超越方程,从而简化了求解过程。在动力学模型中,分析了动力学参数对天然气水合物分解成冰和气体过程的影响。以粉末状甲烷水合物分解成冰和气体为例,在准稳态近似框架中估算了参数E2f的值,也得到了甲烷气体在冰层中扩散系数的约值。同时,还解释了甲烷水合物异常的自保护效应现象。此外,该模型的试用范围还需要作进一步的验证。

关键词: 天然气水合物, 分解, 动力学模型, 冰层, 自保护效应

Abstract:

Based on diffusion mechanism and chemical kinetic theory,the kinetic model of natural gas hydrate dissociation into ice and gas is proposed.The pore structure of ice layer and the intrinsic kinetics of process of natural gas hydrate dissociation are considered in this model.In the framework of a quasi-stationary approximation,this kinetic model can be solved analytically to obtain transcendental equation and simplify the solution of this model.In the kinetic model,we analyze the effect of kinetic parameters on the process of natural gas hydrate dissociation into ice and gas.Further,the dissociation of powdery methane hydrate samples into ice and gas is taken as an example.The values of parameters E2 and f are estimated in the framework of a quasi-stationary approximation,and the approximate value of the diffusion coefficient of methane gas in the ice layer is also obtained.At the same time,it also explains the anomalous self-preservation effect of methane hydrate.Furthermore,the trial scope of this kinetic model needs to be further verified.

Key words: Natural gas hydrate, Dissociation, Kinetic model, Ice layer, Self-preservation effect

中图分类号: 

  • TE132.3

[1]Jerome R,Maria B.Monetizing gas:focusing on developments in gas hydrate as a mode of transportation[J].Energy Science and Technology,2012,4(2):61-68.
[2]Li Mingchuan,Fan Shuanshi.Radial mathematical model for hot water dissociation frontal brim of natural gas hydrates[J].Journal of Chemical Engineering of Chinese Universities,2013,27(5):761-766.[李明川,樊栓狮.天然气水合物注热水分解径向数学模型[J].高校化学工程学报,2013,27(5):761-766.]
[3]Zhou Shouwei,Chen Wei,Li Qingping.The green solid fluidization development principle of natural gas hydrate stored in shallow layers of deep water[J].China Offshore Oil and Gas,2014,26(5):1-7.[周守为,陈伟,李清平.深水浅层天然气水合物固态流化绿色开采技术[J].中国海上油气,2014,26(5):1-7.]
[4]Nakoryakov V,Misyura S.The features of self-preservation for hydrate systems with methane[J].Chemical Engineering Science,2013,104(18):1-9.
[5]Falenty A,Kuhs W,Glockzin M,et al.Self-preservation of CH4 hydrates for gas transport technology:pressure-temperature dependence and ice microstructures[J].Energy Fuels,2014,28(10):6275-6283.
[6]Mimachi H,Takahashi M,Takeya S,et al.Effect of long-term storage and thermal history on the gas content of natural gas hydrate pellets under ambient pressure[J].Energy Fuels,2015,29(18):4827-4834.
[7]Takeya S,Muromachi S,Yamamoto Y,et al.“Preservation” of CO2 hydrate under different atmospheric conditions[J].Fluid Phase Equilib,2016,413(15):137-141.
[8]Rehder G,Eckl R,Elfgen M,et al.Methane hydrate pellet transport using the self-preservation effect:a techno-economic analysis[J].Energies,2012,5(12):2499-2523.
[9]Kim H,Bishnoi P,Heidemann R.Kinetics of methane hydrate decomposition [J].Chemical Engineering Science,1987,42(7):1645-1653.
[10]He Xiaoxia,Yu Jinsong,Ma Yinghai,et al.Particle shrinking dynamic model for methane hydrate decomposition[J].Natural Gas Geoscience,2005,16(6):136-139.[何晓霞,余劲松,马应海,等.甲烷水合物分解的缩粒动力学模型[J].天然气地球科学,2005,16(6):136-139.]
[11]Lin Wei,Chen Guangjin.Review of research on the dissociation kinetics of gas hydrate[J].The Chinese Journal of Process Engineering,2004,4(1):69-74.[林微,陈光进.气体水合物分解动力学研究现状[J].过程工程学报,2004,4(1):69-74.]
[12]Sun C,Chen G.Methane hydrate dissociation above 0℃ and below 0℃[J].Fluid Phase Equilib,2006,242(2):123-128.
[13]Vlasov V.Phenomenological diffusion theory of formation of gas hydrate from ice powder[J].Theoretical Foundations of Chemical Engineering,2012,46(6):576-582.
[14]Vlasov V.Diffusion model of gas hydrate formation from ice[J].Heat Mass Transfer,2016,52(3):531-537.
[15]Vlasov V.Formation and dissociation of gas hydrate in terms of chemical kinetics[J].Reaction Kinetics Mechanisms and Catalysis,2013,110(1):5-13.
[16]Staykova D,Kuhs W,Salamatin A,et al.Formation of porous gas hydrates from ice powders:diffraction experiments and multistage model[J].The Journal of Physical Chemistry B,2003,117(37):10299-10311.
[17]Kuhs W,Staykova D,Salamatin A.Formation of methane hydrate from poly disperse ice powders[J].The Journal of Physical Chemistry B,2006,110(26):13283-13295.
[18]Takeya S,Ebinuma T,Uchida T,et al.Self-preservation effect and dissociation rates of CH4 hydrate[J].Journal of Crystal Growth,2002,237(21):379-382.
[19][JP3]Ikeda F,Kawamura K,Hondoh T.Mechanism of molecular diffusion in ice crystals[J].Molecular Simulation,2004,30(17):973-979.
[20]Stern L,Circone S,Kirby S,et al.Anomalous preservation of pure methane hydrate at 1 atm[J].The Journal of Physical Chemistry B,2001,105(9):1756-1762.
[21]Stern L,Circone S,Kirby S,et al.Temperature,pressure,and compositional effects on anomalous or “self” preservation of gas hydrates[J].Canadian  Journal of Physics,2003,81(1):271-283.
[22]Stern L,Circone S,Kirby S,et al.Preservation of methane hydrate at 1 atm[J].Energy Fuels,2001,15(2):499-501.
[23]Kuhs W,Genov G,Staykova D,et al.Ice perfection and onset of anomalous preservation of gas hydrates[J].Physical Chemistry Chemical Physics,2004,6(21):4917-4920.

[1] 梁金强,付少英,陈芳,苏丕波,尚久靖,陆红锋,方允鑫. 南海东北部陆坡海底甲烷渗漏及水合物成藏特征[J]. 天然气地球科学, 2017, 28(5): 761-770.
[2] 吴闯,尹宏伟,于常青,皮金云,吴珍云,汪伟,张佳星. 青海省木里地区天然气水合物构造成藏机制——来自物理模拟实验的启示[J]. 天然气地球科学, 2017, 28(5): 771-784.
[3] 刘洁,张建中,孙运宝,赵铁虎. 南海神狐海域天然气水合物储层参数测井评价[J]. 天然气地球科学, 2017, 28(1): 164-172.
[4] 肖红平,吴青柏,林畅松,魏伟,张金华,彭涌,张鹏,张巧珍. 天然气水合物成藏要素及其时空耦合初探——以青藏高原昆仑山垭口多年冻土区为例[J]. 天然气地球科学, 2016, 27(10): 1913-1923.
[5] 宋换新,文志刚,包建平. 祁连山木里地区煤岩有机地球化学特征及生烃潜力[J]. 天然气地球科学, 2015, 26(9): 1803-1813.
[6] 田仁飞,杨春峰,胡宇,杨振峰,李秋菊. 识别岩性油藏薄储集层的谱分解技术[J]. 天然气地球科学, 2015, 26(2): 360-366.
[7] 孙嘉鑫,宁伏龙,郑明明,张凌,刘天乐,周欣,蒋国盛,Chikhotkin V F. 室内沉积物中天然气水合物形成数值模拟研究[J]. 天然气地球科学, 2015, 26(11): 2172-2184.
[8] 张伟,何家雄,卢振权,苏丕波,李晓唐,刘志杰. 琼东南盆地疑似泥底辟与天然气水合物成矿成藏关系初探[J]. 天然气地球科学, 2015, 26(11): 2185-2197.
[9] 刘杰,刘江平,程飞,杨文海. 基于岩石物理方法分析青藏高原天然气水合物填充模式[J]. 天然气地球科学, 2015, 26(11): 2198-2207.
[10] 郑明明, 蒋国盛,宁伏龙,刘力,张凌,李实,张可,Chikhotkin V.F.. 模拟冻土区水合物地层骨架的人造岩心实验研究[J]. 天然气地球科学, 2014, 25(7): 1120-1126.
[11] 苏丕波,乔少华,付少英,梁金强,苏明,杨睿,吴能友. 南海北部琼东南盆地天然气水合物成藏数值模拟[J]. 天然气地球科学, 2014, 25(7): 1111-1119.
[12] 蔡涵鹏,龙浩,贺振华,李亚林,邓吉刚,何光明,邹文. 基于地震数据瞬时相位谱的地层厚度估算[J]. 天然气地球科学, 2014, 25(4): 574-581.
[13] 蒋观利,吴青柏,杨玉忠,展静. 砂土中不同产状甲烷水合物形成和分解过程研究[J]. 天然气地球科学, 2013, 24(6): 1305-1310.
[14] 刘乐乐,鲁晓兵,张旭辉. 天然气水合物分解引起多孔介质变形流固耦合研究[J]. 天然气地球科学, 2013, 24(5): 1079-1085.
[15] 周锡堂,樊栓狮,梁德青. CO2乳状液置换天然气水合物中CH4的动力学研究[J]. 天然气地球科学, 2013, 24(2): 259-264.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!