天然气地球科学

• 非常规天然气 • 上一篇    下一篇

水力压裂条件下“三软”煤层压裂渗透模型及应用

王志荣1,贺平1,郭志伟1,陈玲霞1,徐培远2,3   

  1. 1.郑州大学水利与环境学院,河南 郑州 450001;2.河南省煤田地质局,河南 郑州 450053;
    3.河南省能源钻进工程技术研究中心,河南 郑州 450053
  • 收稿日期:2016-08-24 修回日期:2017-01-07 出版日期:2017-03-10 发布日期:2017-03-10
  • 作者简介:王志荣(1963-),男,浙江嘉善人,教授,博士,主要从事地质工程与地质灾害防治研究.E-mail:wangzhirong513@sina.com.
  • 基金资助:

    国家自然科学基金项目(编号:41272339)资助.

The research on permeable model of hydraulic fractureand its application in the “three soft” coal seam

Wang Zhi-rong1,He Ping1,Guo Zhi-wei1,Chen Lin-xia1,Xu Pei-yuan2,3   

  1. 1.College of Environmental and Hydraulic Engineering, Zhengzhou University, Zhengzhou 450001, China;
    2.Henan Coalfield Geology Bureau, Zhengzhou 450053, China;
    3. Research Centre of Energy Engineering of Henan, Zhengzhou 450053, China
  • Received:2016-08-24 Revised:2017-01-07 Online:2017-03-10 Published:2017-03-10

摘要:

为了探索水力压裂条件下由软煤、软顶和软底构成的特殊地质体(简称“三软”煤层)裂缝的扩展规律,以及压裂后储层的裂隙分布特征,结合河南焦作煤层气田的注水压裂试验,基于PKN模型的裂缝宽度假设与裂缝流动的摩阻压降规律,着重考虑软煤裂隙中压裂液的滤失因素,构建了水力压裂条件下“三软”矿区碎裂煤的裂缝扩展模型与渗透率计算模型,并运用地震实测法和渗透率反演计算法分别进行了验证。研究结果表明,实际施工条件下试验区二1煤层压裂后的裂缝几何特征大致相同,长度分布区间为81.85~139.23m,平均为100.41m;最大裂缝宽度区间为24.83~32.78mm,平均为27.32mm,裂缝长度与地震实测结果基本一致。应用裂缝渗透模型,进一步计算得到压裂后煤储层的渗透率一般在(9.21~86.61)×10-3μm2之间,平均为31.63×10-3μm2。与后期排采结果所得到的储层渗透率反演值相对比,二者基本吻合。由此可见,压裂改造后的煤储层的渗透率得到显著提高,裂缝扩展与裂缝渗透模型皆可应用于指导“三软”矿区的压裂抽采实践与产能预测。

关键词: “三软”煤层, 水力压裂, 裂缝扩展模型, 裂缝渗透模型, 渗透率反演

Abstract:

In order to find out the crack propagation law in hydraulic fracturing conditions and crack distribution features for “Three Soft” coal seam, this paper combines the hydraulic fracturing test of coal seam gas field in Jiaozuo Henan based on the assumption of crack width in PKN model and frictional pressure drop law of fracture flowing. This paper focuses on fluid loss factors of fracturing fluid, finally the crack propagation and permeability calculation model of cataclastic coal under hydraulic fracturing was established, and it verified the result by earthquake measure method and retrieval algorithm. The results show that each crack of Ⅱ1 coal seam has roughly similar geometric feature. Its length is 81.85-139.23m with an average of 100.41m. The maximum width is 24.83-32.78mm with an average of 27.32mm, and the length results accord with the earthquake measurement. Based on the fracture permeation model, the permeability of coal reservoir is about (9.21-86.61)×10-3μm2 with an average of 31.63×10-3μm2. It’s easy to find the results are consistent with the later inversion reservoir permeability. Thus, after fracturing treatment, coal reservoir permeability is significantly improved. Crack propagation and fracture permeability model can be used for guiding fracturing gas extraction and predicating the productivity of the “Three Soft” coal seam.

Key words: “Three Soft&rdquo, coal seam, Hydraulic fracturing, Fracture extending model, Fracture permeation model, Permeability inversion

中图分类号: 

  • TE122

[1]Wang Zhirong,Chen Lingxia,Cheng Congren,et al.Forecast of gas geological hazards for “Three-Soft” coal seams in gliding structural area[J].Journal of China University of Mining and Technology,2007,17(4): 484-488.
[2]Hu Xiangzhi,Wang Zhirong,Zhang Zhenlun.Coalbed Methane Exploitation and Gas Suck in “Three Soft”Mining Areas[M].Zhengzhou:Yellow River Water Conservancy Press,2011:125-130.[胡向志,王志荣,张振伦.煤层气开发与“三软”矿区瓦斯抽采[M].郑州:黄河水利出版社,2011:125-130.]
[3]Wang Zhirong,Han Zhongyang,Li Shukai,et al.Coupling characteristics of soft coal fracture damage and coalbed methane seepage under water fracturing condition[J].Journal of Henan Polytechnic University,2014,33(2):125-131.[王志荣,韩中阳,李树凯,等.注水压裂条件下软煤裂隙损伤与煤层气渗透耦合特征[J].河南理工大学学报,2014,33(2):125-131.]
[4]Wang Zhirong,Han Zhongyang,Li Shukai,et al.Mechanism of water-fracturing-induced permeability increment of “Three-Soft” coal seam and construction parameters determination[J].Natural Gas Geoscience,2014,25(5):739-746.[王志荣,韩中阳,李树凯,等.“三软”煤层注水压裂增透机理及瓦斯抽采施工参数确定[J].天然气地球科学,2014,25(5):739-746.]
[5]Yang Xiufu,Liu Xisheng,Chen Mian,et al.Status quo of hydraulic fracturing technique and its developing trend at home and abroad[J].Drilling & Production Technology,1998,21(4):21-26.[杨秀夫,刘希圣,陈 勉,等.国内外水力压裂技术现状及发展趋势[J].钻采工艺,1998,21(4):21-26.]
[6]Ni Xiaoming,Su Xianbo,Zhang Xiaodong.Coal Bed Methane Development Geology[M].Beijing:Chemical Industry Press,2012:27-36.[倪小明,苏现波,张小东.煤层气开发地质学[M].北京:化学工业出版社,2012:27-36.]
[7]Yi Xiangyi,Lei Qun,Ding Yunhong.Technology and Application of Coal Bed Methane Hydraulic Fracturing[M].Beijing: Petroleum Industry Press,2012:124-148.[伊向艺,雷群,丁云宏.煤层气压裂技术及应用[M].北京:石油工业出版社,2012:124-148.]
[8]Zhang Xiaodong,Zhang Peng,Liu Hao,et al.Fracture extended model under hydraulic fracturing engineering for high rank coal reservoirs[J].Journal of China University of Mining &Technology,2013,42(4):573-579.[张小东,张鹏,刘浩,等.高煤级煤储层水力压裂裂缝扩展模型研究[J].中国矿业大学报,2013,42(4):573-579.]
[9]Wang Chen.Study and application of the model of hydraulic fracture propagation based on the energy theory[J].Value Engineering,2013,23(22):327-328.[王臣.基于能量理论的水力裂缝扩展模型研究与应用[J].价值工程,2013,23(22):327-328.]
[10]Li Lindi,Zhang Shicheng,Geng Meng.A study of the propagation law of hydraulic fractures in coalbed gas reservoirs[J].Natural Gas Industry,2010,30(2):72-75.[李林地,张士诚,庚勐.煤层气藏水力裂缝扩展规律[J].天然气工业,2010,30(2):72-75.]
[11]Zhao Wanchun,Wang Tingting,Fu Xiaofei,et al.Study of damage tensor folding mutation model for fracturing rock mass and its application[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(2):3406-3411.[赵万春,王婷婷,付晓飞,等.水力压裂岩体损伤破裂折迭突变模型研究与应用[J].岩石力学与工程学报,2014,33(2):3406-3411.]
[12]Xu Lulu,Cui Jinbang,Huang Saipeng,et al.Analysis and application of fracture propagated model by hydraulic fracturing in coal-bed methane reservoir[J].Journal of China Coal Society,2014,39(10):2068-2074.[许露露,崔金榜,黄赛鹏,等.煤层气储层水力压裂裂缝扩展模型分析及应用[J].煤炭学报,2014,39(10):2068-2074.]
[13][KG*6/7]Xiao Hui.Research of Hydraulic Fracturing Dynamic Propagation in Fractured Reservoirs[D].Chengdu:Southwest Petroleum University,2014.[肖辉.裂缝性储层水力裂缝动态扩展理论研究[D].成都:西南石油大学,2014.]
[14]Cao Daiyong,Zhang Shouren,Ren Deyi.The influence of structural deformation on coalification:A case study of carboniferous coal measures in the northern foothills of the Dabie orogenie belt[J].Geological Review,2002,48(3):313-317.[曹代勇,张守仁,任德贻.构造变形对煤化进程的影响—以大别造山带北麓地区石炭纪含煤岩系为例[J].地质论评,2002,48(3):313-317.]
[15]Yu Shaocheng.Hydraulic Fracturing Technology Manual[M].Beijing: Petroleum Industry Press,2010:134-140.[俞绍诚.水力压裂技术手册[M].北京:石油工业出版社,2010:134-140.]
[16]Zhang Qi.Principle and Design of Oil Production Engineering[M].Dongying:China University of Petroleum Press,2006:250-260.[张琪.采油工程原理与设计[M].东营:中国石油大学出版社,2006:250-255.]
[17]Yang Xingdong.Evolution of fracture system and permeability during coal-bed methane extraction[J].Liaoning Chemical Industry,2013,42(10):1187-1189.[杨兴东.煤层气开采过程中裂缝系统与渗透率演化关系[J].辽宁化工,2013,42(10):1187-1189.]
[18]Li Hongxin. Analysis on CBM occurrence characteristics of Jiulishan Coalfield in Jiaozuo[J].Zhong Zhou Coal,2012,(9):4-7.[李宏欣.焦作九里山井田煤层气赋存特征分析[J].中州煤炭,2012,(9):4-7.]
[19]Zhang Gaoqun,Xiao Bing,Hu Yaya,et al.Application on novel active water fracturing fluid in coal-bed methane wells[J].Drilling Fluid & Completion Fluid,2013,30(1):66-68.[张高群,肖兵,胡娅娅,等.新型活性水压裂液在煤层气井的应用[J].钻井液与完井液,2013,30(1):66-68.]
[20]Song Jia,Lu Yuan,Li Yongshou,et al.Experiment research on fracture fluid dynamic filtration of coal rocks[J].Reservoir Evaluation and Development,2013,1(1):74-77.[宋佳,卢渊,李永寿,等.煤岩压裂液动滤失实验研究[J].油气藏评价与开发,2013,1(1):74-77.]
[21]Zhang Jiangguo,Du Dianfa,Hou Jian,et al.Oil and Gas Reservoirs Porous Flow Mechanics[M].Dongying:China University of Petroleum Press,2010:115-125.[张建国,杜殿发,侯健,等.油气层渗流力学[M].东营:中国石油大学出版社,2010:115-125.]

[1] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[2] 付海峰,刘云志,梁天成,翁定为,卢拥军,修乃岭. 四川省宜宾地区龙马溪组页岩水力裂缝形态实验研究[J]. 天然气地球科学, 2016, 27(12): 2231-2236.
[3] 杜书恒,赵晔,庞姗,师永民. 岩石水力压裂微观破裂机制[J]. 天然气地球科学, 2016, 27(12): 2237-2245.
[4] 尚校森,丁云宏,杨立峰,卢拥军,鄢雪梅,王永辉. 基于结构弱面及缝间干扰的页岩缝网压裂技术[J]. 天然气地球科学, 2016, 27(10): 1883-1891.
[5] 张小东,张硕,杨艳磊,张鹏,魏高洋. 基于分形理论的煤储层水力压裂裂缝数值模拟[J]. 天然气地球科学, 2015, 26(10): 1992-1998.
[6] 杜书恒,师永民. 低渗油气藏水力压裂理想水驱波及范围预测新方法[J]. 天然气地球科学, 2015, 26(10): 1956-1962.
[7] 王宇,李晓,王金波,郑博,张搏,赵志恒. 水力压裂中的应力阴影效应与数值计算[J]. 天然气地球科学, 2015, 26(10): 1941-1950.
[8] 王志荣,韩中阳,李树凯,胡向志. “三软”煤层注水压裂增透机理及瓦斯抽采施工参数确定[J]. 天然气地球科学, 2014, 25(5): 739-746.
[9] 程远方,常鑫,孙元伟,王欣. 基于断裂力学的页岩储层缝网延伸形态研究[J]. 天然气地球科学, 2014, 25(4): 603-611.
[10] 谢维扬, 李晓平. 水力压裂缝导流的页岩气藏水平井稳产能力研究[J]. 天然气地球科学, 2012, 23(2): 387-392.
[11] 倪小明, 陈鹏, 李广生, 张宜生. 恩村井田煤体结构与煤层气垂直井产能关系[J]. 天然气地球科学, 2010, 21(3): 508-512.
[12] 倪小明, 苏现波, 李广生. 樊庄地区3#和15#煤层合层排采的可行性研究[J]. 天然气地球科学, 2010, 21(1): 144-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨振恒,魏志红,何文斌,范明,俞凌杰,徐二社,钱门辉. 川东南地区五峰组—龙马溪组页岩现场解吸气特征及其意义[J]. 天然气地球科学, 2017, 28(1): 156 -163 .
[2] 杨晓东,张苗,魏巍,李娟,傅雪海. 沁水盆地古县区块煤系“三气”储层孔隙特征对比[J]. 天然气地球科学, 2017, 28(3): 356 -365 .
[3] 郗兆栋,唐书恒,李俊,李雷. 沁水盆地中东部海陆过渡相页岩孔隙结构及分形特征[J]. 天然气地球科学, 2017, 28(3): 366 -376 .
[4] 钱凯,孙晓惠,许小琼,韩荣花,范云,魏星,昌新玲,任珠琳,崔亚亚. 下印度河盆地石油地质、油气分布及油气富集区特征[J]. 天然气地球科学, 2017, 28(12): 1797 -1809 .
[5] 陈瑞银, 米敬奎, 陈建平. 煤热压实验成熟度的地质标定[J]. 天然气地球科学, 2018, 29(1): 96 -102 .