天然气地球科学

• 天然气地球化学 • 上一篇    下一篇

磁铁矿对有机质生烃及同位素分馏的影响

蔡郁文1,2,3,张水昌2,3,何坤2,3,米敬奎2,3,张文龙2,3,王晓梅2,3,王华建2,3,吴朝东1   

  1. 1.北京大学地球科学与空间科学学院,北京 100871;2.中国石油勘探开发研究院,北京 100083;
    3.中国石油天然气股份有限公司油气地球化学重点实验室,北京 100083
  • 收稿日期:2016-09-05 修回日期:2016-11-01 出版日期:2017-02-10 发布日期:2017-02-10
  • 作者简介:蔡郁文(1989-),女,黑龙江大庆人,博士研究生,主要从事油气地球化学研究. E-mail:caiyuwen1@aliyun.com.
  • 基金资助:

    国家油气专项“高过成熟阶段天然气生成机理与源灶有效性评价”(编号:2016ZX05007001);中国石油天然气股份有限公司“深层油气勘探开发理论认识与技术集成”项目(编号:2014D-3209)联合资助.

The effect of magnetite on the products and isotopic fractions of gaseous hydrocarbons

Cai Yu-wen1,2,3,Zhang Shui-chang2,3,He Kun2,3,Mi Jing-kui2,3,Zhang Wen-long2,3,Wang Xiao-mei2,3,Wang Hua-jian2,3,Wu Chao-dong1   

  1. 1.School of Earth and Space Sciences,Peking University,Beijing 100871,China;
    2.Research Institute of Petroleum Exploration and Development,CNPC,Beijing 100083,China;
    3.Key Laboratory of Petroleum Geochemistry,CNPC,Beijing 100083,China
  • Received:2016-09-05 Revised:2016-11-01 Online:2017-02-10 Published:2017-02-10

摘要:

对一个低熟Ⅱ型干酪根分别开展了有,无四氧化三铁(Fe3O4)条件下的有水热解实验,旨在探讨含铁矿物对有机质生烃及同位素分馏的影响。气体产物的定量结果表明,Fe3O4的加入一定程度上降低了烃类气体,H2和H2S产率,对CO2产率影响不大。稳定碳同位素的分析结果表明,相同热演化程度下,干酪根有水和水+Fe3O4条件下热解生成甲烷的碳同位素比值差异不大,但后者生成的乙烷和丙烷的碳同位素值明显偏高。同时,Fe3O4的加入明显抑制了气态烃中D的富集。在水+Fe3O4条件下,甲烷氢同位素值的偏低幅度可达5‰~50‰,乙烷可达24‰~40‰。2种热解体系固体残余物碳同位素无明显差异,水+Fe3O4体系中,固体有机质的氢同位素值低于有水体系。同时,Fe3O4的加入抑制了有水热解过程中干酪根H/C的降低。表明有水和水+Fe3O4热解体系中水—有机质的反应机制有一定的差别,前者为正离子反应,后者由于Fe3O4的存在这一反应受到了抑制,造成气体产率偏低,并存在H2的间接加氢作用。

关键词: 气态烃, 四氧化三铁(Fe3O4), 有水热解, 碳同位素组成, 氢同位素组成

Abstract:

In this paper,the influences of iron-bearing minerals on gas generation and isotopic fractionation of organic matters was studied by hydrous pyrolysis of a type-II kerogen of low maturity in the presence or absence of Fe3O4.Quantitative determination of the gas products generated during the experiments indicated that the addition of Fe3O4 would lower the yields of gaseous hydrocarbons,H2 and H2S,whereas exerting little influence on the yields of CO2.Carbon isotopic analysis revealed that when Fe3O4 is added to the reaction system,the carbon isotope of methane was not significantly affected,however,the isotopic values of both ethane and propone showed increase to different degrees.In contrast,the hydrogen isotopic values of the gaseous products in the presence of iron-bearing mineral were more depleted,and the reduction of methane and the ethane were 5‰-50‰ and 24‰-40‰,respectively.Likewise,the isotopic analysis of the residues showed similar trends with the gas products,which is the lighter hydrogen isotope values in the experiments with Fe3O4,and there are no obvious differences of carbon isotope with or without Fe3O4.Additionally,H/C elemental ratios of the residues decreased at a slower rate and exhibited higher values in the cases of iron-bearing mineral added experiments.The above results indicated that different reaction systems are of different reacting mechanisms.When Fe3O4 is absent,the reaction system operates in the cationic reacting mode.However,when Fe3O4 is added to the reaction system,cationic reactions were inhibited,thus resulting in the reduction of gas generation,and there exists indirect hydrogenation controlled by the presence of hydrogen.

Key words: Natural gas, Magnetite(Fe3O4), Hydrous pyrolysis, Hydrogen isotopes, Carbon isotopes

中图分类号: 

  • TE122.1+13

[1]Shimoyama A,Johns W D.Catalytic conversion of fatty acids to petroleum-like paraffins and their maturation[J].Nature,1971,232(33):140-144.
[2]Tannenbaum E,Kaplan I R.Role of minerals in the thermal alteration of organic matter-I:Generation of gases and condensates under dry condition[J].Geochimica Et Cosmochimica Acta,1985,49(12):2589-2604.
[3]Tannenbaum E,Kaplan I R.Low-Mr hydrocarbons generated during hydrous and dry pyrolysis of kerogen[J].Nature,1985,317(6039):708-709.
[4]Pan C C,Jiang L L,Liu J Z,et al.The effects of calcite and montmorillonite on oil cracking in confined pyrolysis experiments[J].Organic Geochemistry,2010,41:611-626.
[5]Pan C C,Geng A S,Zhong N N,et al.Kerogen pyrolysis in the presence and absence of water and minerals:Amounts and compositions of bitumen and liquid hydrocarbons[J].Fuel,2009,88(5):909-919.
[6]Zhao Wenzhi,Wang Zhaoyun,Wang Hongjun,et al.Cracking conditions of oils existing in different modes of occurrence and forward and backward inference of gas source rock kitchen of oil cracking type[J].Geology in China,2006,33(5):952-965.[赵文智,王兆云,王红军,等.不同赋存状态油裂解条件及油裂解型气源灶的正演和反演研究[J].中国地质,2006,33(5):952-965.]
[7]Tannenbaum E,Huizinga B J,Kaplan I.Role of minerals in thermal alteration of organic matter-Ⅱ:A material balance[J].AAPG Bulletin,1986,70(9):1156-1165.
[8]Zhao Guiyu,Li Shuyuan,Liu Luofu,et al.A study on characteristics and kinetics of catalytic degradation from kerogen in carbonate rocks[J].Chinese Jounrnal of Geology,2005,40(1):47-54.[赵桂瑜,李术元,刘洛夫,等.碳酸盐岩干酪根催化降解生烃过程及动力学研究[J].地质科学,2005,40(1):47-54.]
[9]Zhang Jinglian,Zhang Pingzhong.A discussion of pyrite catalysis on the hydrocarbon generation process[J].Advance in Earth Sciences,1996,11(3):282-287.[张景廉,张平中.黄铁矿对有机质成烃的催化作用讨论[J].地球科学进展,1996,11(3):282-287.]
[10]Ma Xiangxian,Zheng Jianjing,Zheng Guodong.Catalysis of iron-bearing minerals on hydrocarbon generation and evolation of brown coal[J].Natural Gas Geoscience,2014,25(7):1065-1071.[马向贤,郑建京,郑国东.含铁矿物对褐煤生烃演化的催化作用[J].天然气地球科学,2014,25(7):1065-1071.]
[11]Ma X X,Zheng J J,Zheng G D,et al.Influence of pyrite on hydrocarbon generation during pyrolysis of type-Ⅲ kerogen[J].Fuel,2016,167:329-336.
[12]Orr W L.Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation-study of Big Horn basin Paleozoic oils[J].AAPG Bulletin,1974,58(11):2295-2318.
[13]Dai Jinxing,Hu Jianyi,Jia Chengzao,et al.Suggestion for scientifically and safely exploring and developing high H2S gas fields[J].Petroleum Exploration and Development,2004,31(2):1-4.[戴金星,胡见义,贾承造,等.科学安全勘探开发高硫化氢天然气田的建议[J].石油勘探与开发,2004,31(2):1-4.]
[14]Desrocher S,Hutcheon I,Kirste D,et al.Constraints on the generation of H2S and CO2 in the subsurface Triassic,Alberta Basin,Canada[J].Chemical Geology,2004,204(3):237-254.
[15]Zhang Shuichang,Zhu Guangyou,Liang Yingbo.Probe into formation mechanism of H2S and high-quality reservoirs of Puguang large gasfield in Sichuan Basin[J].Geological Riview,2006,52(2):230-235.[张水昌,朱光有,梁英波.四川盆地普光大型气田H2S及优质储层形成机理探讨[J].地质论评,2006,52(2):230-235.]
[16]Zhang Shuichang,Zhu Guangyou,He Kun.The effects of thermochemical sulfate reduction on occurrence of oil-cracing gas and reformation of deep carbonate reservoir and the interaction mechanisms[J].Acta Petrologica Sinica,2011,27(3):809-826.[张水昌,朱光有,何坤.硫酸盐热化学还原作用对原油裂解成气和碳酸盐岩储层改造的影响及作用机制[J].岩石学报,2011,27(3):809-826.]
[17]Mango F D.Transition metal catalysis in the generation of petroleum:A genetic anomaly in Ordovician oils[J].Geochimica et cosmochimica acta,1992,56(10):3851-3854.
[18]Mango F D,Hightower J.The catalytic decomposition of petroleum into natural gas[J].Geochimica et Cosmochimica Acta,1997,61(24):5347-5350.
[19]Lewan M D.Experiments on the role of water in petroleum formation[J].Geochimica et Cosmochimica Acta,1997,61(17):3691-3723.
[20]Lewan M D.Effects of thermal maturation on stable organic carbon isotopes as determined by hydrous pyrolysis of Woodford Shale[J].Geochimica et Cosmochimica Acta,1983,47(8):1471-1479.
[21]Behar F,Lewan M D,Lorant F,et al.Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions[J].Organic Geochemistry,2003,34(4):575-600.
[22]Siskin M,Katritzky A R.Reactivity of organic compounds in hot water:geochemical and technological implications[J].Science,1991,254(5029):231-237.
[23]Sun Lina,Zhang Mingfeng,Wu Chengjun,et al.The effects of water medium on the products of different pyrolysis system[J].Natural Gas Geoscience,2015,26(3):524-532.[孙丽娜,张明峰,吴陈君,等.水对不同生烃模拟实验系统产物的影响[J].天然气地球科学,2015,26(3):524-532.]
[24]Gao L,Schimmelmann A,Tang Y,et al.Isotope rollover in shale gas observed in laboratory pyrolysis experiments:Insight to the role of water in thermogenesis of mature gas[J].Organic Geochemistry,2014,68:95-106.
[25]Hirano K,Kouzu M,Okada T,et al.Catalytic activity of iron compounds for coal liquefaction[J].Fuel,1999,78(15):1867-1873.
[26]Taylor S R,Mclennan S M.The geochemical evolution of the continental Crust[J].Revista Brasileira De Fisiologia Vegetal,1995,33(2):293-301.
[27]Baldwin R M,Vinciguerra S.Coal liquefaction catalysis[J].Fuel,1983,62(5):498-501.
[28]Zu Xiaojing,Sui Jincai,Zhang Mingfeng,et al.The roles of inorganic minerals on the oil and gas generating processe[J].Acta Sedimentologica Sinica,2007,25(2):298-306.[祖小京,妥进才,张明峰,等.矿物在油气形成过程中的作用[J].沉积学报,2007,25(2):298-306.]
[29]Weng Sihao,Gao Jinsheng.Mossbauer spectroscopic study of iron catalyst in coal hydroliquefaction:I.On the transformation and the action mechanism of iron sulphide in hydrogenation[J].Journal of Fuel Chemistry and Technology.1990,(18)2:103-115.[翁斯灏,高晋生.煤加氢液化铁催化剂的穆斯堡谱研究:Ⅰ.铁硫化物在加氢反应[J].燃料化学学报,1990,18(2):103-115.]
[30]Weng Sihao,Wu Youqing,Gao Jinsheng,et al.Mossbauer spectroscopic study of iron catalyst in coal hydroliquefaction:II.On the transformation and the hydrogenation activity of ferric oxide under various reaction conditions[J].Journal of Fuel Chemistry and Technology.1990,(18)2:97-102.[翁斯灏,吴幼青,高晋生,等.煤加氢液化铁催化剂的穆斯堡谱研究:Ⅱ.氧化铁在不同反应[J].燃料化学学报,1990,18(2):97-102.]
[31]Elmore R D,Engel M H,Crawford L,et al.Evidence for relationship between hydrocarbons and authigenic magnetite[J].Nature,1987,325(6103):428-430.
[32]Elmore R D,London D,Bagley D,et al.Remagnetization by basinal fluids:Testing the hypothesis in the Viola limestone,southern Oklahoma[J].Journal of Geophysical Research,1993,98(B4):6237-6254.
[33]Liu Qingsheng,Li Haixia,Wang Fang,et al.geochemical and mineralogical structure and significance in complete space of oil and gas reservoir:Implications for Formation Mechanism of “Chimney Effect”[J].Earth Science:Journal of China University of Geosciences,2002,27(5):637-644.[刘庆生,李海侠,王芳,等.油气藏全空间磁学,地球化学与矿物学结构及意义—检验“烟筒效应”的形成机理[J].地球科学,2002,27(5):637-644.]
[34]Donovan T J,Forgey R L,Roberts A A.Aeromagnetic detection of diagenetic magnetite over oilfields[J].American Association of Petroleum Geologists,Bulletin,1979,63(2):245-248.
[35]Zhang S C,Zhang B M,Bian L Z,et al.The Xiamaling oil shale generated through Rhodophyta over 800Ma ago[J].Science in China,2007,50(4):527-535.
[36]He Kun,Zhang Shuichang,Mi Jingkui.Research on the kinetics and controlling factors for oil cracking natural gas geoscience[J].Natural Gas Geoscience,2011,22(2):211-218.[何坤,张水昌,米敬奎.原油裂解的动力学及控制因素研究[J].天然气地球科学,2011,22(2):211-218.]
[37]Mao Rong,Mi Jingkui,Zhang Shuichang,et al.Study on the hydrocarbon generation characteristics of different coaly source rocks by gold-tube pyrolysis experiments[J].Natural Gas Geoscience,2012,23(6):1127-1134.[毛榕,米敬奎,张水昌,等.不同煤系源岩生烃特征的黄金管热模拟实验对比研究[J].天然气地球科学,2012,23(6):1127-1134.]
[38]Zhang S C,Mi J L,He K.Synthesis of hydrocarbon gases from four different carbon sources and hydrogen gas using a gold-tube system by Fischer-Tropsch method[J].Chemical Geology,2013,349-350(4):27-35.
[39]Sweeney J J,Burnham A K.Evaluation of a simple model of vitrinite reflectance based on Chemical kinetics[J].AAPG Bulletin,1990,74(10):1559-1570.
[40]Lewan MD.Laboratory Simulation of Petroleum Formation[J].Organic Geochemistry,1993:419-442
[41]Yu Linping,Pan Changchun,Liu Jinzhong,et al.Influence of oxidation by minerals onproportional and carbon isotopic compostions of gaseous hydrocarbons[J].Geochimica,2005,34(3):269-277.[于林平,潘长春,刘金钟,等.氧化作用对气态烃组成和碳同位素组成的影响[J].地球化学,2005,34(3):269-277.]
[42]Ma Yue,Li Shuyuan,Wang Juan,et al.Mechanism of oil shale pyrolysis under high pressure water[J].Journal of Fuel Chemistry and Technology,2011,39(12):881-886.[马跃,李术元,王娟,等.水介质条件下油页岩热解机理研究[J].燃料化学学报,2011,39(12):881-886.]
[43]Wang Xiaofeng,Liu Wenhui,Xu Yongchang,et al.Hydrogen Isotopic composition of gaseous hydrocarbon under hydrous pyrolysis[J].Scientia Sinica Terrac,2012,42(1):103-110.[王晓锋,刘文汇,徐永昌,等.水介质对气态烃形成演化过程氢同位素组成的影响[J].中国科学:D辑,2012,42(1):103-110.]
[44]Seewald J S.Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures:constraints from mineral buffered laboratory experiments[J].Geochimica et Cosmochimica Acta,2001,65(10):1641-1664.
[45]Leif R N,Simoneit B R T.The role of alkenes produced during hydrous pyrolysis of a shale[J].Organic Geochemistry,2000,31:1189-1208.
[46]He K,Zhang S,Mi J,et al.Mechanism of catalytic hydropyrolysis of sedimentary organic matter with MoS2[J].Petroleum Science,2011,8(2):134-142.
[47]Song C,Saini A K,Yoneyama Y.A new process for catalytic liquefaction of coal using dispersed MoS2 catalyst generated in situ with added H2O[J].Fuel,2000,79(3):249-261.
[48]Seewald J S.Organic-inorganic interactions in petroleum-producing sedimentary basins[J].Nature,2003,426(6964):327-333.

[1] 杨福林,王铁冠,李美俊. 塔里木台盆区寒武系烃源岩地球化学特征[J]. 天然气地球科学, 2016, 27(5): 861-872.
[2] 孟强,王晓锋,王香增,张丽霞,姜呈馥,李孝甫,史宝光. 页岩气解析过程中烷烃碳同位素组成变化及其地质意义——以鄂尔多斯盆地伊陕斜坡东南部长7页岩为例[J]. 天然气地球科学, 2015, 26(2): 333-340.
[3] 王杰, 刘文汇, 腾格尔, 秦建中, 郑伦举. 南方海相层系不同类型烃源(岩)生烃模拟实验及其产物同位素演化规律[J]. 天然气地球科学, 2011, 22(4): 684-691.
[4] 刘全有 刘文汇 王长华. 依据热模拟实验动态建立煤成烃模式[J]. 天然气地球科学, 2009, 20(1): 20-25.
[5] 陶伟, 邹艳荣, 刘金钟, 张馨, 张长春. 压力对粘土矿物催化生烃的影响[J]. 天然气地球科学, 2008, 19(4): 548-552.
[6] 陈践发;唐友军;徐立恒;李玲;马广宇;赵兴齐. 川东北地区石炭系与二叠系—三叠系天然气地球化学特征对比研究[J]. 天然气地球科学, 2008, 19(06): 741-747.
[7] 耿新华,;耿安松 . 源自海相碳酸盐岩烃源岩原油裂解成气的动力学研究[J]. 天然气地球科学, 2008, 19(05): 695-700.
[8] 李美俊;王铁冠;刘 菊;张梅珠;卢 鸿;马庆林;高黎惠 . 北部湾盆地福山凹陷天然气成因与来源[J]. 天然气地球科学, 2007, 18(2): 260-265.
[9] 张殿伟,刘文汇,刘全有, 高波. 煤系源岩显微组分对天然气碳同位素组成影响的应用[J]. 天然气地球科学, 2005, 16(6): 792-796.
[10] Galimov E M;Rabbani A R;王杰(译). 伊朗南部天然气的来源及其地球化学特征[J]. 天然气地球科学, 2002, 13(5-6): 50-59.
[11] KeithA.Kvenvolden;李玉梅;. 天然气水合物中甲烷的地球化学研究[J]. 天然气地球科学, 1998, 9(3-4): 9-18.
[12] 朱岳年. 天然气中非烃组分地球化学研究进展[J]. 天然气地球科学, 1994, 5(1): 1-29.
[13] 戴金星. 天然气碳氢同位素特征和各类天然气鉴别[J]. 天然气地球科学, 1993, 4(2、3): 1-40.
[14] 朱岳年; . 地下油气聚集的地表土壤磁化率和土壤气态烃分析研究[J]. 天然气地球科学, 1991, 2(5): 238-244.
[15] 宋岩; 戴金星; . 中国东部温泉气的组合类型及其成因初探[J]. 天然气地球科学, 1991, 2(5): 199-202,208.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!