天然气地球科学

• 非常规天然气 • 上一篇    下一篇

有机质纳米孔隙吸附页岩气的分子模拟

张廷山1,2,何映颉1,2,杨洋1,2,伍坤宇1,3   

  1. 1.西南石油大学油气藏地质与开发工程国家重点实验室,四川 成都 610500;
    2.西南石油大学地球科学与技术学院,四川 成都 610500;
    3.青海油田勘探开发研究院,甘肃 敦煌 736202
  • 收稿日期:2016-06-15 修回日期:2016-07-30 出版日期:2017-01-10 发布日期:2017-01-10
  • 作者简介:张廷山(1961-),男,贵州贵阳人,教授,博士,博士生导师,主要从事非常规油气资源评价的研究与教学. E-mail:zts_3@126.com.
  • 基金资助:

    国家自然科学青年基金(编号:41302123);博士学科点专项科研基金(编号:20125121130001)联合资助.

Molecular simulation of shale gas adsorption in organic-matter nanopores

Zhang Ting-shan1,2,He Ying-jie1,2,Yang Yang1,2,Wu Kun-yu1,3   

  1. 1.State Key Lab of  Oil & Gas Reservoir Geology and Exploitation Engineering,Southwest Petroleum University,Chengdu 610500,China;
    2.School of Resources and Environment,Southwest Petroleum University,Chengdu  610500,China;
    3.Institute of Exploration and Development,Qinghai Oilfield Company,CNPC,Dunhuang 736202,China
  • Received:2016-06-15 Revised:2016-07-30 Online:2017-01-10 Published:2017-01-10

摘要:

页岩气是一种资源潜力巨大的非常规油气,随着页岩气勘探规模的不断扩大,对页岩气的认识也不断深入。为进一步研究页岩有机质纳米孔隙对CH4的吸附作用及微观机理,更好地认识页岩气的赋存形式,利用分子模拟软件Material Studio搭建碳纳米管模型表征有机质纳米孔隙,运用蒙特卡洛方法、分子力学、分子动力学方法模拟四川盆地及其周缘早古生代(筇竹寺组、五峰组及龙马溪组)页岩气普遍埋深2~4km条件下,有机质孔隙对CH4、CO2的吸附、扩散行为。研究表明,有机质孔隙对CH4、CO2的吸附为物理吸附,埋深2km为页岩气最优储存埋深;其混合吸附的数据显示,注入CO2置换CH4开采页岩气具有合理性和可行性,埋深约4km时效果较为理想;CH4与CO2沿孔隙内壁法线方向的相对密度呈对称分布趋势,并出现明显的吸附分层现象,且第二聚集层及第三聚集层的形成很可能主要受到压力的影响。整体上,随温压的增加,CH4与CO2沿Z方向的相对密度呈较小的下降趋势;而CH4及CO2的自扩散系数随埋深的增加而增大,与吸附热及吸附量的变化原因一致。

关键词: 有机质孔隙, 吸附, 扩散, 碳纳米管, 分子模拟, 页岩气

Abstract:

Shale gas is a kind of unconventional oil-gas resource with tremendous potential.For thorough understanding of the methane adsorption and micromechanism in organic-matter nanopores of the shale and better acquaintances of the occurrence form,graphite slit-pores were set up as a representation of organic-matter nanopores by using Material Studio,and the grand canonical Monte Carlo method,molecular mechanics and molecular dynamics were used for the simulation of adsorption and diffusion behaviors in organic-matter pores on CH4 and CO2 at the shale gas common burial depth of 2-4km in the Upper Yangtze Plate.The results indicated that the adsorptions of CH4 and CO2 were physical and the optimal storage depth was 2km;The mixed adsorption data showed the rationality of exploit shale gas by injecting CO2to exchange CH4,and the optimal burial depth was 4km;The relative density of CH4 and CO2 along the normal direction of the pore inwall showed a trend of symmetric distribution and apparent adsorption stratifications appeared.As a whole,the self-diffusion coefficient of CH4 and CO2 increased with the increase of burial depth,and it's consistent with the reasons for such changes of adsorption amount and adsorption heat.

Key words: Organic-matter pores, Adsorption, Diffusion, Carbon nanotube, Molecular simulation, Shale gas

中图分类号: 

  • TE132.2

[1]Zou Caineng,Dong Dazhong,Yang Hua,et al.Conditions of shale gas accumulation and exploration practices in China[J].Natural Gas Industry,2011,31(12):26-39.[邹才能,董大忠,杨桦,等.中国页岩气形成条件及勘探实践[J].天然气工业,2011,31(12):26-39.]
[2]Wang Shiqian.Shale gas exploration and appraisal in China:Problems and discussion[J].Natural Gas Industry,2013,33(12):13-29.[王世谦.中国页岩气勘探评价若干问题评述[J].天然气工业,2013,33(12):13-29.]
[3]Zhang Xiaotao,Chen Man,Jiang Xin,et al.Productivity evaluation method of shale gas well[J].Natural Gas Geoscience,2016,27(3):549-553.[张小涛,陈满,蒋鑫,等.页岩气井产能评价方法研究[J].天然气地球科学,2016,27(3):549-553.]
[4]Curtis.Fractured shale-gas systems[J].AAPG Bulletin,2002,86(11):1921-1938.
[5]Wang Yuman,Dong Dazhong,Li Jianzhong,et al.Reservoir characteristics of shale gas in Longmaxi Formation of the Lower Silurian,southern Sichuan[J].Acta Petrolei Sinica,2012,33(4):551-561.[王玉满,董大忠,李建忠,等.川南下志留统龙马溪组页岩气储层特征[J].石油学报,2012,33(4):551-561.]
[6]Jiang Ruizhong,Qiao Xin,He Jixiang,et al.A new method to calculate shale gas geological reserves[J].Natural Gas Geoscience,2016,27(4):699-705.[姜瑞忠,乔欣,何吉祥,等.页岩气地质储量计算新方法[J].天然气地球科学,2016,27(4):699-705.]
[7]Ma Xingzhi,Liu Shaobo,Jiang Lin,et al.Quantitative analysis on affecting factors of gas adsorption capacity measurement on the shale[J].Natural Gas Geoscience,2016,27(3):488-493.[马行陟,柳少波,姜林,等.页岩吸附气含量测定的影响因素定量分析[J].天然气地球科学,2016,27(3):488-493.]
[8]Huang Zhenkai,Chen Jianping,Wang Yijun,et al.Characteristics of micropores of the Cretaceous Qingshankou Formation,Songliao Basin[J].Acta Petrolei Sinica,2013,34(1):30-36.[黄振凯,陈建平,王义军,等.松辽盆地白垩系青山口组泥岩微观孔隙特征[J].石油学报,2013,34(1):30-36.]
[9]Sima Liqiang,Li Qing,Yan Jianping,et al.The diversity analysis and meaning of mudstone and shale gas reservoir rock fabric between China and north America[J].Journal of Oil and Gas Technology,2013,35(9):29-33.[司马立强,李清,闫建平,等.中 国与北美地区页岩气储层岩石组构差异性分析及其意义[J].石油天然气学报,2013,35(9):29-33.]
[10]Ross D J K,Bustin R M.Shale gas potential of the Lower Jurassic Gordondale Member,northeastern British Columbia,Canada[J].Bulletin of Canadian Petroleum Geology,2007,55(1):51-75.
[11]Ross D J K,Bustin R M.The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J].Marine and Petroleum Geology,2009,26(6):916-927.
[12]Zou Caineng,Zhu Rukai,Bai Bin,et al.First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J].Acta Petrologica Sinica,2011,27(6):1857-1864.[邹才能,朱如凯,白斌,等.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报,2011,27(6):1857-1864.]
[13]Li Wuguang,Yang Shenglai,Chen Feng,et al.The sensitivity study of shale gas adsorption and desorption with rising reservoir temperature[J].Journal of Mineralogy and Petrology,2012,32(2):115-120.[李武广,杨胜来,陈峰,等.温度对页岩吸附解吸的敏感性研究[J].矿物岩石,2012,32(2):115-120.]
[14]Zhang Zhiying,Yang Shengbo.On the adsorption and desorption trend of shale gas[J].Journal of Experimental Mechanics,2012,27(4):492-497.[张志英,杨胜波.页岩气吸附解吸规律研究[J].实验力学,2012,27(4):492-497.]
[15]Liu L,Nicholson D,Bhatia S K.Adsorption of CH4 and CH4/CO2 mixtures in carbon nanotubes and disordered carbons a molecular simulation study[J].Chemical Engineering Science,2015,121:268-278.
[16]Cao Wei,Lü Linghong,Huang Liangliang,et al.Molecular simulations on diameter effect of carbon nanotube for separation of CO2/CH4[J].CIESC Journal,2014,65(5):1736-1742.[曹伟,吕玲红,黄亮亮,等.不同管径碳纳米管中CO2/CH4分离的分子模拟[J].化工学报,2014,65(5):1736-1742.]
[17]He Shuai,Liu Honglin,Qin Guan.Molecular Dynamics Simulation on Modeling Shale Gas Transport and Storage Mechanisms in Complex Nano-Pore Structure in Organic Matters[C].The Unconventional Resources Technology Conference,San Antonio,Texas,USA,20-22 July 2015.
[18]Shuai H,Conrad J C,Guan Q.Molecular Dynamics Simulation of Natural gas Transport in Carbon Nano-Pore Structures[C].2014 AIChE Annual Meeting,Hilton Atlanta,USA,November 2014:16-21.
[19]Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale gas systems:The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale gas assessment[J].AAPG Bulletin,2007,91(4):475-499.
[20]Li Denghua,Li Jianzhong,Wang Shejiao,et al.Analysis of controls on gas shale reservoirs[J].Natural Gas Industry,2009,29(5):22-26.[李登华,李建忠,王社教,等.页岩气藏形成条件分析[J].天然气工业,2009,29(5):22-26.]
[21]Hou Yuguang,He Sheng,Yi Jizheng,et al.Effect of pore structure on methane sorption capacity of shales[J].Petroleum Exploration and Development,2014,41(2):248-256.[侯宇光,何生,易积正,等.页岩孔隙结构对甲烷吸附能力的影响[J].石油勘探与开发,2014,41(2):248-256.]
[22]Sun Weifeng,Gao Junguo,Guo Ning.Molecular dynamics simulation study of carbon nanotube/polyethylene nanocomposites[J].Acta Materiae Compositae Sinica,2014,31(2):286-294.[孙伟峰,高俊国,郭宁.碳纳米管/聚乙烯复合物分子动力学模拟研究[J].复合材料学报,2014,31(2):286-294.]
[23]Razavi S S,Hashemianzadeh S M,Karimi H.Modeling the adsorptive selectivity of carbon nanotubes for effective separation ofCO2/N2 mixtures[J].
Journal of Molecular Modeling,2011,17(5):1163-1172.
[24]Ye Qing,Zhang Yu,Li Ming,et al.Adsorption oflow concentration CO2 by modified carbon nanotubes under ambient temperature[J].Acta Physico-Chimica Sinica,2012,28(5):1223-1229.[叶青,张瑜,李茗,等.改性碳纳米管常温下吸附分离低浓度CO2[J].物理化学学报,2012,28(5):1223-1229.]
[25]Sun H.Compass:An ab-initio force field optimized for condensed-phase applications-overview with details on alkane and benzene compounds[J].Journal of Physical Chemistry B,1998,102(38):7338-7364.
[26]Sun H,Ren P,Fried J R.The compass force field:parameterization and validation for phosphazenes[J].Computational and Theoretical Polymer Science,1998,8(1/2):229-246.
[27]Lennard Jones J E.On the forces between atoms and ions[J].Proceedings of the  Royal  Society of London,1925,109(752):584-597.
[28]Li Xijian,Xu Hao.Feasibility analysis on MC simulation in coalbed methane adsorption and desorption[J].Coal Technology,2010,29(9):84-86.[李希建,徐浩.煤层甲烷吸附与解吸的MC模拟可行性分析[J].煤炭技术,2010,29(9):84-86.]
[29]Andersen H C.Molecular dynamics simulations at constant pressure and/or temperature[J].Journal Physical Chemistry,1980,72(4):2384-2393.
[30]Jiao Hongyan,Dong Mingzhe,Liu Zhongwei,et al.Molecular dynamics simulation of methane adsorption with presence of water on different wettability quartz surface[J].Journal of China University of Petroleum:Natural Science Edition,2014,38(5):178-183.[焦红岩,董明哲,刘仲伟,等.水环境下甲烷在不同润湿性石英表面吸附行为的分子动力学模拟[J].中国石油大学学报:自然科学版,2014,38(5):178-183.]
[31]Liu Bing,Shi Junqin,Shen Yue,et al.A molecular dynamics simulation of methane adsorption in graphite slit-pores[J].Computational Physics,2013,30(5):692-699.[刘冰,史俊勤,沈跃,等.石墨狭缝中甲烷吸附的分子动力学模拟[J].计算物理,2013,30(5):692-699.]
[32]Singer D A.Some suggested future directions of quantitative resources assessment[J].Journal of China University of Geosciences,2001,12(1):40-44.
[33]Leach A R.Molecular Modeling:Principle and Application[M].London:Addison Wesley Longman Limited,1996.
[34]Yu Qingsen,Zhulongguan.An Introduction to Molecular Design[M].Beijing:China Higher Education Press,2000.[俞庆森,朱龙观.分子设计导论[M].北京:高等教育出版社,2000.]
[35]Fu Xiancai,Shen Wenxia,Yao Tianyang.Physical Chemistry[M].Beijing:Higher Education Press,1993.[傅献彩,沈文霞,姚天扬.物理化学[M].北京:高等教育出版社,1993.]
[36]Li Xinjing,Hu Suyun,Cheng Keming.Suggestions from the development of fractured shale gas in north America[J].Petroleum Exploration and Development,2007,34(4):392-400.[李新景,胡素云,程克明.北美裂缝性页岩气勘探开发的启示[J].石油勘探与开发,2007,34(4):392-400.]
[37]Cao Bin,Gao Jinsen,Xu Chunming.The applications of molecular simulation technology in the fields of petroleum[J].Progress in Chemistry,2001,16(2):291-298.[曹斌,高金森,徐春明.分子模拟技术在石油相关领域的应用[J].化学进展,2001,16(2):291-298.]
[38]Jing Zhenhua.Molecular simulation technique and its applications in the study of metallocene catalysts for olefins[J].Acta Petrolei Sinica:Petroleum Processing Section,2005,21(3):39-46.[景振华.分子模拟技术在烯烃聚合茂金属催化剂研究中的应用[J].石油学报:石油加工,2005,21(3):39-46.]
[39]Lu Yigang,Peng Jianxin.Study of acoustical properties of supercritical carbon dioxide using liquid acoustical theory[J].Acta Physica Sinica,2008,57(2):1030-1036.[卢义刚,彭健新.运用液体声学理论研究超临界二氧化碳的声特性[J].物理学报,2008,57(2):1030-1036.]
[40]Zhang Xiaolei,Kang Yili.Influence factors analysis of shale methane diffusion coefficient[C]//The Chinese Mechanical Assembly-2013 Abstract Set.Xi’an,China,2013:154.[张晓磊,康毅力.页岩甲烷扩散系数影响因素分析[C]//中国力学大会—2013论文摘要集.西安,中国,2013:154.]

[1] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[2] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[3] 王朋飞,姜振学,吕鹏,金璨,李鑫,黄璞. 重庆周缘下志留统龙马溪组和下寒武统牛蹄塘组页岩有机质孔隙发育及演化特征[J]. 天然气地球科学, 2018, 29(7): 997-1008.
[4] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[5] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[6] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[7] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[8] 王香增,张丽霞,姜呈馥,尹锦涛,高潮,孙建博,尹娜,薛莲花. 鄂尔多斯盆地差异抬升对长7页岩孔隙的影响——以东南部甘泉地区和南部渭北隆起地区为例[J]. 天然气地球科学, 2018, 29(5): 597-605.
[9] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[10] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[11] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[12] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[13] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[14] 卢文涛,李继庆,郑爱维,梁榜,张谦,杨文新. 涪陵页岩气田定产生产分段压裂水平井井底流压预测方法[J]. 天然气地球科学, 2018, 29(3): 437-442.
[15] 鲍祥生,谈迎,吴小奇,郑红军. 利用纵横波速度法预测泥页岩脆性矿物指数[J]. 天然气地球科学, 2018, 29(2): 245-250.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!