天然气地球科学

• 天然气开发 • 上一篇    下一篇

致密气储层岩心束缚水饱和度实验对比

张冲,张超谟,张占松,秦瑞宝,余杰   

  1. (1.长江大学油气资源与勘探技术教育部重点实验室,湖北 武汉 434023;
    2.长江大学地球物理与石油资源学院,湖北 武汉 434023;3.中海油研究总院,北京 100027) 
  • 收稿日期:2015-05-11 修回日期:2015-09-30 出版日期:2016-02-10 发布日期:2016-02-10
  • 作者简介:张冲(1983),男,湖北汉川人,副教授,硕士生导师,主要从事复杂储层测井解释理论与方法研究. Email:yzlogging@163.com.
  • 基金资助:

    国家自然科学基金(编号:41404084);湖北省自然科学基金(编号:2013CFB396);长江大学青年人才项目(编号:2015CQR11)联合资助.

Comparative experimental study of the core irreducible water saturation of tight gas reservoir

Zhang Chong,Zhang Chaomo,Zhang Zhansong,Qin Ruibao,Yu Jie   

  1. (1.Key Laboratory of Exploration Technologies for Oil and Gas Resources of Education Ministry
    of Yangtze University,Wuhan 434023,China;
    2.Geophysics and oil Resource Institute,Yangtze University,Wuhan 434023,China;
    3.CNOOC Research Institute,Beijing 100027,China)
  • Received:2015-05-11 Revised:2015-09-30 Online:2016-02-10 Published:2016-02-10

摘要:

束缚水饱和度是进行储层油气评价、产能预测及储量计算的关键参数,现有的确定岩心束缚水饱和度的实验标准不适合于致密气储层岩样。选取大量具有代表性的致密砂岩岩样,进行了半渗透隔板、核磁共振及压汞实验测量,并对这3种实验确定束缚水饱和度的方法进行了对比研究。研究认为:选用阈压值为1.5MPa的隔板进行半渗透隔板毛细管压力曲线测量,并不能准确获取岩心束缚水饱和度,隔板阈压值需要达到3MPa;致密砂岩岩样在离心机上用0.690MPa离心力甩出的自由水并不充分,最佳离心力应为1.379MPa,结合核磁共振饱和T2谱与1.379MPa离心力下测量的离心T2谱可以有效地确定致密岩样的束缚水饱和度;半渗透隔板毛细管压力曲线与压汞毛细管压力曲线在形态上存在差异,压汞法采用毛细管压力为1.379MPa(转换为气—水系统)时所对应的束缚水饱和度更为可靠。

关键词: 半渗透隔板, 核磁共振, 压汞, 束缚水饱和度, 致密气储层

Abstract:

The irreducible water saturation is the key parameter of oil and gas reservoir evaluation,productivity prediction and the calculation of reserves.The existent experimental standard of the core irreducible water saturation is not suitable for rock samples of tight gas reservoir.A large number of representative tight sandstone samples were selected for semi permeable diaphragm experiment,NMR experiment and mercury injection experiment.After making a comparative study of these three methods,some conclusions were made.If the plate whose pressure threshold value is 1.5MPa is selected to get the capillary pressure curves,the accurate core irreducible water saturation cannot be obtained.The appropriate pressure threshold value needs to reach 3MPa.The best centrifugal force for getting free water of the tight sandstone samples is 1.379MPa instead of 0.690MPa.Combing T2 distribution in 1.379MPa centrifugal force condition and T2 distribution of saturation NMR,the irreducible water saturation of tight rock samples can be effectively determined.The semipermeable plate capillary pressure curves are different with mercury injection capillary pressure curves in the shape of curve.When the capillary pressure is 1.379MPa,mercury intrusion method can get more reliable irreducible water saturation.The above research results have reference significance for the revision of the industry standard of petroleum and natural gas industry in China.

Key words: Semipermeable plate, Nuclear magnetic resonance (NMR), Mercury injection, Irreducible water saturation, Tight gas reservoir

中图分类号: 

  • TE155

[1]National Energy Bureau.SYT 68322011 Geological Evaluating Methods for Tight Sandstone Gas[S].Beijing:Petroleum Industry Press,2011.[国家能源局.SY/T 68322011致密砂岩气地质评价方法[S].北京:石油工业出版社,2011.]
[2]Qiu Zhongjian,Deng Songtao.Strategic position of unconventional natural gas resources in China[J].Natural Gas Industry,2012,32(1):15.[邱中建,邓松涛.中国非常规天然气的战略地位[J].天然气工业,2012,32(1):15.]
[3]Zou Caineng,Tao Shizhen,Yang Zhi,et al.New advance in unconventional petroleum exploration and research in China[J].Bulletin of Mineralogy,Petrology and Geochemistry,2012,31(4):312322.[邹才能,陶士振,杨智,等.中国非常规油气勘探与研究新进展[J].矿物岩石地球化学通报,2012,31(4):312322.]
[4]Jia Chengzao,Zheng Min,Zhang Yongfeng.Unconventional hydrocarbon in China and prospect of exploration and development[J].Petroleum Exploration and Development,2012,39(2):129136.[贾承造,郑民,张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发,2012,39(2):129136.]
[5]Qiu Zhongjian,Zhao Wenzhi,Deng Songtao.Roadmap for tight and shale gas[J].China Petrochem,2012,17(Special):1821.[邱中建,赵文智,邓松涛.致密气与页岩气发展路线图[J].中国石油石化,2012,17(特稿):1821.]
[6]Hu Wenrui.Development of unconventional natural gas:The best approach to lowcarbon economy and resource efficiency[J].Natural Gas Industry,2010,30(9):18.[胡文瑞.开发非常规天然气是利用低碳资源的现实最佳选择[J].天然气工业,2010,30(9):18.]
[7]Yang Tao,Zhang Guosheng,Liang Kun,et al.The exploration of global tight sandstone gas and forecast of the development tendency in China[J].Engineering Sciences,2012,14(6):6468.[杨涛,张国生,梁坤,等.全球致密气勘探开发进展及中国发展趋势预测[J].中国工程科学,2012,14(6):6468.]
[8]Tian Wei,Zhu Weiyao,Zhu Huayin,et al.The microstructure and seepage characteristics of condensate gas reservoir for tight sandstone [J].Natural Gas Geoscience,2014,25(7):10771084.[田巍,朱维耀,朱华银,等.致密砂岩凝析气藏微观结构及渗流特征[J].天然气地球科学,2014,25(7):10771084.]
[9]Zhao Jingzhou.Conception,classification and resource potential of unconventional hydrocarbons[J].Natural Gas Geoscience,2012,23(3):393404.[赵靖舟.非常规油气有关概念、分类及资源潜力[J].天然气地球科学,2012,23(3):393404.]
[10]Zou Caineng,Zhu Rukai,Wu Songtao,et al.Types,characteristics,genesis and prospects of conventional and unconventional hydrocarbon accumulations:Taking tight gas in China as an instance[J].Acta Petrolei Sinica,2012,33 (2):173187.[邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J].石油学报,2012,33 (2):173187.]
[11]Yang Hua,Fu Jinhua,Liu Xinshe,et al.Accumulation conditions and exploration and development of tight gas in the Upper Paleozoic of the Ordos Basin[J].Petroleum Exploration and Development,2012,39(3):295303.[杨华,付金华,刘新社,等.鄂尔多斯盆地上古生界致密气成藏条件与勘探开发[J].石油勘探与开发,2012,39(3):295303.]
[12]Zou Caineng,Yang Zhi,Tao Shizhen,et al.Nanohydrocarbon and the accumulation in coexisting source and reservoir[J].Petroleum Exploration and Development,2012,39(1):1326.[邹才能,杨智,陶士振,等.纳米油气与源储共生型油气聚集[J].石油勘探与开发,2012,39(1):1326.]
[13]Zou C N,Zhu R K,Liu K Y.Tight gas sandstone reservoirs in China:Characteristics and recognition criteria[J].Journal of Petroleum Science and Engineering,2012,88(6):8889,8291.
[14]Sun Jianmeng,Cheng Fang,Zhang Zhongqing.Application of core electric experimental measurement to determination of irreducible water saturation[J].Journal of China University of Petroleum:Edition of Natural Science,1997,21(1):2223.[孙建孟,程芳,张忠青.应用岩电实验资料确定束缚水饱和度[J].中国石油大学学报:自然科学版,1997,21(1):2223.]
[15]Zhou Yu,Guo Hekun,Wei Guoqi,et al.Irreducible water saturation measurement of volcanic rocks using nuclear magnetic resonance[J].Science & Technology Review,2011,29(5):2427.[周宇,郭河坤,魏国齐.等.火山岩束缚水饱和度核磁共振测量方法[J].科技导报,2011,29(5):2427.]
[16]Zhang Chong,Mao Zhiqiang,Jin Yan.Experimental studies of NMR logging irreducible water saturation[J].Nuclear Electronics & Detection Technology,2010,30(4):514517.[张冲,毛志强,金燕.基于实验室条件下的核磁共振测井束缚水饱和度计算方法研究[J].核电子学与探测技术,2010,30(4):514517.]
[17]Li Ning,Zhou Keming,Zhang Qingxiu,et al.Experimental research on irreducible water saturation[J].Natural Gas Industry,2002,22(supplement):110113.[李宁,周克明,张清秀,等.束缚水饱和度实验研究[J].天然气工业,2002,22(增刊):110113.]
[18]Wang Xiaochang,Fan Yiren,Deng Shaogui,et al.Irreducible water saturation determination based on centrifugal test data[J].Journal of  China University of Petroleum:Edition of Natural Science,2009,33(3):7679.[王晓畅,范宜仁,邓少贵,等.基于离心试验数据确定束缚水饱和度[J].中国石油大学学报:自然科学版,2009,33(3):7679.]
[19]Xian Deqing,Fu Shaoqing,Xie Ranhong.Study on NMR logging bulk volume of irreducible water mode[J].Nuclear Electronics & Detection Technology,2007,27(3):578582.[鲜德清,傅少庆,谢然红.核磁共振测井束缚水模型研究[J].核电子学与探测技术,2007,27(3):578582.]
[20]Chen Kegui,Wen Yina,He Taihong,et al.Irreducible water saturation models of tight sandstone gas reservoirs with low porosity and permeability and its applicationtaking a block of Shanxi Formation tight sandstone reservoir in Sulige Gasfield as an example[J].Natural Gas Geoscience,2014,25(2):273277.[陈科贵,温易娜,何太洪,等.低孔低渗致密砂岩气藏束缚水饱和度模型建立及应用——以苏里格气田某区块山西组致密砂岩储层为例[J].天然气地球科学,2014,25(2):273277.][JP]
[21]Li Haibo,Guo Hekun,Li Haijian,et al.Thickness analysis of bound water film in tight reservoir [J].Natural Gas Geoscience,2015,26(1):186192.[李海波,郭和坤,李海舰,等.致密储层束缚水膜厚度分析[J].天然气地球科学,2015,26(1):182192.]
[22]National Development and Reform Commission.SY/T 53462005 Rock Capillary Pressure Measurement[S].Beijing:Petroleum Industry Press,2005.[国家发展和改革委员会.SY/T 53462005岩石毛细管压力曲线的测定[S].北京:石油工业出版社,2005.]
[23]National Development and Reform Commission.SY/T 64902007 Specification for Core NMR Parameter's Measurement in Laboratory[S].Beijing:Petroleum Industry Press,2007.[国家发展和改革委员会.SY/T 64902007岩样核磁共振参数实验室测量规范[S].北京:石油工业出版社,2007.]
[24]Xiao Liang,Mao Zhiqiang,Jin Yan.Calculation of irreducible water saturation from NMR logs in tight gas Sands[J].Applied Magnetic Resonance,2012,42(1):113125.
[25]Freedman R,Heaton N.Fluid characterization using nuclear magnetic resonance logging[J].Petrophysics,2015,45(3):241250.
[26]Coates G,Xiao Lizhi,Prammer M.NMR Logging:Principles and Applications[M].Houston,Texas:Gulf Publishing Company,1999.
[27]Freedman R,Heaton N,Flaum M,et al.Wettability,saturation and viscosity from NMR measurements[J].SPE Journal,2003,8(4):317327.
[28]Li Haibo.Core Experimental Study of NMR T2 Cutoff value[D].Beijing:Chinese Academy of Sciences,2008.[李海波.岩心核磁共振可动流体T2截止值实验研究[D].北京:中国科学院研究生院,2008.]
[29]Li Xia,Zhao Wenzhi,Zhou Cancan,et al.Dualporosity saturation model of lowporosity and lowpermeability clastic reservoirs[J].Petroleum Exploration and Development,2012,39(1):8291.[李霞,赵文智,周灿灿,等.低孔低渗碎屑岩储集层双孔隙饱和度模型[J].石油勘探与开发,2012,39(1):8291.]

[1] 郭睿良,陈小东,马晓峰,马静,[王琪],陈霖. 鄂尔多斯盆地陇东地区延长组长7段致密储层水平向可动流体特征及其影响因素分析[J]. 天然气地球科学, 2018, 29(5): 665-674.
[2] 毛港涛, 赖枫鹏, 木卡旦斯·阿克木江, 蒋志宇. 沁水盆地赵庄井田煤层气储层水锁伤害影响因素[J]. 天然气地球科学, 2018, 29(11): 1647-1655.
[3] 张宫,冯庆付,武宏亮,王克文,冯周. 基于核磁T2谱对数均值差异的碳酸盐岩气水识别[J]. 天然气地球科学, 2017, 28(8): 1243-1249.
[4] 杨晓东,张苗,魏巍,李娟,傅雪海. 沁水盆地古县区块煤系“三气”储层孔隙特征对比[J]. 天然气地球科学, 2017, 28(3): 356-365.
[5] 时建超,屈雪峰,雷启鸿,傅波,何右安,赵国玺,成良丙. 致密油储层可动流体分布特征及主控因素分析——以鄂尔多斯盆地长7储层为例[J]. 天然气地球科学, 2016, 27(5): 827-834.
[6] 刘登科,孙卫,任大忠,张茜,明红霞,陈斌. 致密砂岩气藏孔喉结构与可动流体赋存规律——以鄂尔多斯盆地苏里格气田西区盒8段、山1段储层为例[J]. 天然气地球科学, 2016, 27(12): 2136-2146.
[7] 田夏荷,屈红军,刘新社,杨欢,董文武,陈雅晖. 鄂尔多斯盆地东部上古生界致密气储层石英溶蚀及其机理探讨[J]. 天然气地球科学, 2016, 27(11): 2005-2012.
[8] 降文萍,张群,姜在炳,韩保山. 构造煤孔隙结构对煤层气产气特征的影响[J]. 天然气地球科学, 2016, 27(1): 173-179.
[9] 陈义林,秦勇,田华,唐家祥. 基于压汞法无烟煤孔隙结构的粒度效应[J]. 天然气地球科学, 2015, 26(9): 1629-1639.
[10] 朱华银,安来志,焦春艳. 恒速与恒压压汞差异及其在储层评价中的应用[J]. 天然气地球科学, 2015, 26(7): 1316-1322.
[11] 王志荣,陈玲霞,韩中阳,陈平. 基于13C NMR谱的煤层气应力成藏作用机理及控气意义[J]. 天然气地球科学, 2015, 26(5): 958-965.
[12] 王欣,齐梅,李武广,胡永乐,刘佳,赵凯. 基于分形理论的页岩储层微观孔隙结构评价[J]. 天然气地球科学, 2015, 26(4): 754-759.
[13] 李鹏举,谷宇峰. 核磁共振T2谱转换伪毛管压力曲线的矩阵方法[J]. 天然气地球科学, 2015, 26(4): 700-705.
[14] 闫建平,温丹妮,李尊芝,耿斌,梁强,何旭. 低渗透砂岩孔隙结构对岩电参数的影响及应用[J]. 天然气地球科学, 2015, 26(12): 2227-2233.
[15] 王濡岳,冷济高,丁文龙,龚大建,李飞,孙雅. 上扬子地区下寒武统牛蹄塘组优质页岩储层测井识别——以贵州岑巩页岩气区块为例[J]. 天然气地球科学, 2015, 26(12): 2395-2407.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!