天然气地球科学 ›› 2023, Vol. 34 ›› Issue (2): 194–209.doi: 10.11764/j.issn.1672-1926.2022.10.003

• 天然气地球化学 • 上一篇    下一篇

鄂尔多斯盆地南部旬邑地区延长组砂岩地球化学特征

吴颖1,2(),杜贵超1,2,马明3,4   

  1. 1.西安石油大学地球科学与工程学院,陕西 西安 710065
    2.西安石油大学陕西省油气成藏地质学重点实验室,陕西 西安 710065
    3.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
    4.甘肃省油气资源研究重点实验室,甘肃 兰州 730000
  • 收稿日期:2022-07-22 修回日期:2022-10-09 出版日期:2023-02-10 发布日期:2023-03-06
  • 作者简介:吴颖(1984-),女,陕西咸阳人,博士,副教授,硕士生导师,主要从事常规、非常规油气地质与勘探等研究和教学工作.E-mail: wuyingbiy@163.com.
  • 基金资助:
    陕西省教育厅重点实验室科研计划项目(18JS092);国家自然科学基金“琼东南盆地渐新世—上新世砂岩物源及其对古红河演变的制约”(42202193);甘肃省自然科学基金“琼东南盆地渐新世砂岩物源示踪:碎屑锆石U-Pb年龄和碎屑钾长石Pb同位素双重约束”(22JR5RA080)

Geochemical characteristics of the sandstones of the Yanchang Formation in the Xunyi area, southern Ordos Basin

Ying WU1,2(),Guichao DU1,2,Ming MA3,4   

  1. 1.School of Earth Sciences and Engineering,Xi'an Shiyou University,Xi'an 710065,China
    2.Shaanxi Key Laboratory of Oil and Gas Accumulation Geology,Xi'an 710065,China
    3.Northwest Institute of Eco?Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    4.Key Laboratory of Petroleum Resources,Gansu Province,Lanzhou 730000,China
  • Received:2022-07-22 Revised:2022-10-09 Online:2023-02-10 Published:2023-03-06
  • Supported by:
    The Scientific Research Program of Key Laboratory of Shaanxi Provincial Department of Education(18JS092);The National Natural Science Foundation of China(42202193);the Natural Science Foundation of Gansu Province(22JR5RA080)

摘要:

通过对鄂尔多斯盆地南部旬邑地区延长组砂岩进行主量元素、微量元素和稀土元素分析,明确了旬邑地区延长组沉积期的沉积环境、源区风化程度以及古气候条件等,进一步探讨了研究区砂岩的源区母岩岩性及构造背景等。微量元素比值及其相关图解表明,鄂尔多斯盆地南部地区延长组沉积时期属于氧化环境,能够反映古气候条件的重要指标均显示旬邑地区延长组沉积期属于典型的干旱型气候。砂岩样品的化学蚀变指数(CIA)值分布于10.93~86.17之间,平均值为45.38,化学风化指数(CIW)值分布于0.42~56.42之间,平均值为10.52,表明研究区砂岩从源区搬运至沉积盆地的过程中经历的风化作用较弱,该结论与A—CN—K三角图解所得出的结论相一致,而且Th—U图解与Sm—Ce图解表明沉积物经历了简单的沉积循环过程。砂岩样品稀土元素球粒陨石标准化模式总体显示轻稀土(LREE)相对富集,重稀土(HREE)相对平坦,铕具有“V”形负异常,铈异常不明显,曲线表现为明显右倾,与UCC和PAAS的分布形态类似,表明旬邑地区延长组砂岩物源来自上地壳酸性母岩区,该结论与F1—F2图解、Cr/V—Y/Ni图解、Th/Co—La/Sc图解、Th/Sc—Zr/Sc图解及La/Yb—∑REEs图解所得出的结论相一致。La—Th—Sc与Th—Sc—Zr/10图解表明研究区砂岩的源区大地构造背景属于大陆岛弧和活动大陆边缘环境。显著高的Fe、P等元素含量和较高的烧失量显示延长组沉积期富含营养物质,而且干旱炎热的气候条件和风化程度较低的酸性火成岩有利于研究区烃源岩有机质的保存和转化,有利的储层条件和优势储盖组合为研究区发育大型油气田提供了良好的条件。

关键词: 鄂尔多斯盆地, 旬邑地区, 延长组, 沉积环境, 物源, 构造背景

Abstract:

The major elements, trace elements and rare earth elements of the sandstones of Yanchang Formation in the Xunyi area from the southern Ordos Basin were analyzed to research the sedimentary environment, the weathering intensity of the source area and the paleoclimate, as well as to decipher the source rock type and tectonic setting of these sandstones. Trace element ratios and the related diagrams suggest that the depositional environment for the Yanchang Formation in the Xunyi area of the southern Ordos Basin belong to oxygenation environment. The important indicators that can reflect the paleoclimatic conditions show that during the Yanchang Formation in Xunyi area it belonged to a typical arid climate. The chemical alteration index (CIA) value of the sandstone ranges from 10.93 to 86.17 with an average of 45.38, and the chemical Index of Weathering (CIW) value of the samples ranges from 0.42 to 56.42, with a mean value of 10.52, which reflect that the sandstones experienced weak weathering since it was carried from source area to the sedimentary basin, which is consistent with the conclusion of A-CN-K triangle diagram. The diagrams of Th-U and Sm-Ce show that the studied sandstones are first-cycle deposits. The chondrite-normalized REE patterns of the studied sandstones show a slight LREE enrichment, smooth HREE slopes, a negative Eu anomaly in a “V” shape and Ce is normal. The REE patterns are characterized by obvious “right” and are comparable to UCC and PAAS, these indicate that the sandstones being derived from the upper continental crust mainly composed of felsic igneous source rocks. This conclusion is consistent with the conclusions obtained from the diagrams of F1-F2, Cr/V-Y/Ni, Th/Co-La/Sc, Th/Sc-Zr/Sc and La/Yb-∑REEs. Ternary diagrams of La-Th-Sc and Th-Sc-Zr/10 of the sandstone demonstrate the depositional tectonic setting of their parent rocks evolved in a continental island arc or an active continental margin setting. The significantly high content of Fe, P and other elements and the high loss on ignition indicate that the sediments was rich in nutrients during Yanchang Formation. Moreover, the arid and hot climate conditions and the acid igneous rocks with low weathering degree are conducive to the preservation and transformation of organic matter in the hydrocarbon source rocks in this area. The favorable reservoir conditions and dominant reservoir cap assemblages provide good conditions for the development of large oil and gas fields in this area.

Key words: Ordos Basin, Xunyi area, Yanchang Formation, Sedimentary environment, Provenance, Tectonic background

中图分类号: 

  • TE122.1+13

图1

研究区构造位置"

表1

旬邑地区延长组地层简表"

地层厚度/m岩性
三叠系延长组长1段0~250为一套深灰绿色粉砂质泥岩、黑色泥岩与泥质粉砂岩、细砂岩互层,局部夹薄煤层
长2段0~230为一套灰绿色中—细粒砂岩夹灰黑色泥岩、粉砂质泥岩 ,该套地层是盆地延长组重要的储油层之一
长3段
长4+5段250~310为一套砂泥岩互层。长7段以泥岩为主,在盆地南部发育“张家滩”页岩,是盆地主要的烃源岩;长6段以砂岩较发育,是盆地主要的储油层;长4+5段为砂泥岩互层,其下部砂岩较发育,是较好的储油层
长6段
长7段
长8段150~200以湖相沉积为主的砂、泥岩地层。长8段砂岩较发育,是盆地重要的储层;长9段上部发育泥岩,习称“李家畔”页岩,是盆地又一套烃源岩
长9段
长10段100~350为灰绿色、浅红色长石砂岩夹暗紫红色泥岩及粉砂岩,砂岩为浊沸石胶结,呈麻斑结构
纸坊组紫红色泥岩夹少量长石砂岩

表2

旬邑地区延长组砂岩主量元素含量分析结果"

井号旬26旬35旬35旬26旬26旬35旬35旬35旬35旬35
层位长4+5段长6段长6段长7段长7段长8段长8段长8段长8段长8段
深度/m987.32~987.60991.70~991.86992.63~992.78

1 168.23~

1 168.39

1 169.11~

1 169.31

1 163.46~

1 163.70

1 164.23~

1 164.35

1 164.94~

1 165.12

1 165.66~

1 165.77

1 166.24~

1 166.42

SiO2/%13.520.112.793.060.231.740.211.5017.413.19
TiO2/%0.120.010.040.090.010.010.010.010.570.06
Al2O3/%3.100.071.181.630.170.070.170.1414.761.54
TFe2O3/%1.160.351.850.961.160.571.610.291.360.67
MnO/%0.030.010.050.030.040.030.050.010.020.01
MgO/%17.2618.2917.3012.847.5120.7419.6919.632.2615.48
CaO/%25.4533.9932.4937.8646.3730.6431.6831.4131.2934.82
Na2O/%0.130.160.120.270.130.170.110.100.110.12
K2O/%0.680.010.270.330.020.010.040.021.850.33
P2O5/%0.040.010.020.020.010.010.010.010.040.02
LOI38.2042.4144.2646.5243.7446.0846.4942.3028.8743.26
CIA72.6711.5363.1856.6727.4410.9329.5528.5386.1767.16
CIW18.700.428.675.501.250.401.471.3356.4211.02
SiO2/Al2O34.361.572.361.881.3524.861.2410.711.182.07
Fe2O3/K2O1.7135.006.852.9158.0057.0040.2514.500.742.03
Na2O/K2O0.1916.000.440.826.5017.002.755.000.060.36

表3

旬邑地区延长组砂岩微量元素含量分析结果(×10-6)"

井号旬26旬35旬35旬26旬26旬35旬35旬35旬35旬35旬35
层位长4+5段长6段长6段长7段长7段长8段长8段长8段长8段长8段长8段
深度/m987.6991.86992.781 168.391 169.311 163.71 164.351 165.121 165.771 166.421 166.54
Li24.775.041.822.556.842.951174.606.256.072.852.88
Be0.820.500.370.080.680.140.810.220.220.130.14
Sc4.403.550.800.542.180.516.092.102.050.570.58
V17.2814.063.952.089.731.7636.257.677.262.432.46
Cr12.1210.151.641.285.050.7848.265.505.531.321.33
Co9.449.0114.4221.9014.0118.6718.9011.8511.3314.0314.05
Ni10.7412.989.087.4310.906.3335.7110.129.748.098.11
Cu6.817.481.691.965.991.7011.744.554.472.022.04
Zn162.414.323.5081.734.373.967.823.353.313.773.79
Ga4.652.240.370.181.800.217.052.021.980.280.29
Ge0.350.140.070.110.150.110.320.130.120.070.08
Rb23.2211.161.310.778.680.7443.1810.4110.081.151.17
Sr100.86110.01146.91175.6589.7883.96179.1581.7381.48117.42117.43
Y6.409.252.661.836.052.7818.452.752.752.272.29
Zr23.1624.722.030.768.730.65159.5314.6814.661.081.10
Nb3.493.690.260.111.330.0921.351.601.600.130.14
Cs0.490.350.050.030.180.020.590.170.170.050.06
Ba78.4923.196.7317.8618.145.1395.6023.7423.439.399.41
La10.527.811.301.064.741.1965.895.605.471.741.77
Ce20.7416.892.302.729.913.5479.0610.1510.064.574.60
Pr2.302.250.340.371.280.539.911.121.110.610.63
Nd8.389.341.581.625.412.3728.644.174.152.592.61
Sm1.582.120.500.391.420.603.910.780.790.600.62
Eu0.270.410.150.080.270.110.590.140.140.110.13
Gd1.411.860.460.361.250.523.410.680.660.500.53
Tb0.200.260.060.050.180.080.470.080.080.070.07
Dy1.181.510.340.280.960.443.020.440.450.370.38
Ho0.250.290.070.050.190.080.670.090.090.070.08
Er0.670.740.170.120.470.191.990.230.240.160.18
Tm0.100.100.020.020.070.020.330.040.040.020.03
Yb0.660.630.140.090.400.132.160.240.230.120.13
Lu0.100.090.020.010.060.020.340.040.040.020.03
Hf0.600.580.050.020.190.024.490.370.360.030.04
Ta0.250.250.030.010.090.021.580.120.120.020.03
Pb7.7810.371.750.745.990.8421.054.784.791.511.52
Th3.683.210.350.181.260.1324.661.981.960.200.21
U1.761.660.350.301.270.335.763.293.290.280.29

表4

旬邑地区延长组砂岩微量元素参数"

井号旬26旬26旬26旬35旬35旬35旬35旬35旬35旬35旬35
层位长4+5段长6段长6段长7段长7段长8段长8段长8段长8段长8段长8段
深度/m987.6991.86992.781 168.391 169.311 163.71 164.351 165.121 165.771 166.421 166.54
V/Cr1.431.621.931.392.422.250.751.391.311.841.84
V/Sc3.933.824.453.974.943.475.963.653.544.274.21
Ni/Co1.140.340.781.440.630.341.890.850.860.580.58
V/(V+Ni)0.620.220.470.520.300.220.500.430.430.230.23
U/Th0.481.661.010.521.002.540.231.661.681.391.36
Sr/Cu14.8189.3915.0014.7286.9149.3715.2617.9618.2458.1057.44
Rb/Sr0.230.000.100.100.010.010.240.130.120.010.01
∑LREE43.796.2423.0338.816.178.35188.0121.9721.7110.2210.36
∑HREE10.982.819.6214.743.954.2530.834.584.573.603.73
LR/HR3.992.222.392.631.561.966.104.804.752.842.77
∑REE54.779.0532.6553.5510.1212.60218.8426.5526.2913.8214.09
La/Yb15.8611.6911.8212.399.608.9430.4523.7323.6814.4713.19
(La/Yb)N10.697.887.978.356.476.0320.5316.0015.979.758.89
(La/Sm)N4.191.702.102.321.641.2510.604.504.381.831.79
(Gd/Yb)N1.713.222.522.372.763.121.272.312.303.363.17
δEu0.540.640.590.610.940.600.480.580.570.580.68
δCe0.971.050.950.960.821.070.670.920.931.071.04

图2

旬邑地区延长组砂岩有机化学成分分类Log(SiO2/Al2O3)—Log(K2O/Na2O)图解(底图据文献[30])"

图3

旬邑地区延长组砂岩氧化还原环境的微量元素判别指标"

图4

旬邑地区延长组砂岩C值"

图5

旬邑地区延长组砂岩风化程度的A—CN—K三角图(底图据文献[10])"

图6

旬邑地区延长组砂岩沉积循环的Th—U和Sm—Ce相关图"

图7

旬邑地区延长组砂岩主量元素物源判别函数图(底图据文献[15])F1=(-1.773×TiO2)+(0.607×Al2O3)+(0.760*Fe2O3)+ (-1.500×MgO)+(0.616×CaO)+(0.509×Na2O)+(-1.224× *K2O)+(-9.090); F2=(0.445×TiO2)+(0.070×Al2O3)+ (-0.250*Fe2O3)+(-1.142×MgO)+(0.438×CaO)+(1.475× Na2O)+(1.426×K2O)+(-6.861)"

图8

确定成岩作用对稀土元素影响的图解(a) δCe—REE图解; (b) δCe—δEu图解"

图9

旬邑地区延长组砂岩物源判别图(a) Cr/V—Y/Ni图解 (底图据文献[11]); (b) Th/Co—La/Sc图解 (底图据文献[18])"

图10

砂岩Th/Sc—Zr/Sc图解(底图据文献[17])和La/Yb—∑REE图解(底图据文献[8])(a) 砂岩Th/Sc—Zr/Sc图解; (b) 砂岩La/Yb—∑REE图解1.球粒陨石;2.大洋拉斑玄武岩;3.大陆拉斑玄武岩;4.碱性玄武岩;5.花岗岩;6.金伯利岩;7.碳酸盐岩;8.沉积岩;9.钙质泥岩"

图11

旬邑地区延长组砂岩稀土元素配分模式"

图12

La—Th—Sc(a)和Th—Sc—Zr(b)砂岩三角图(底图据文献[48])OIA:大洋岛弧; ACM:活动大陆边缘; PM:被动大陆边缘; CIA:大陆岛弧"

1 杨仁超, 李进步, 樊爱萍, 等. 陆源沉积岩物源分析研究进展与发展趋势[J]. 沉积学报, 2013, 31(1): 99-107.
YANG R C, LI J B, FAN A P, et al. Research progress and development tendency of provenance analysis on terrigenous sedimentary rocks[J]. Acta Sedimentologica Sinica, 2013, 31(1): 99-107.
2 林畅松, 夏庆龙, 施和生, 等. 地貌演化、源—汇过程与盆地分析[J]. 地学前缘, 2015, 22(1): 9-20.
LIN C S, XIA Q L, SHI H S, et al. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 2015, 22(1): 9-20.
3 徐杰, 姜在兴. 碎屑岩物源研究进展与展望[J]. 古地理学报, 2019, 21(3):379-396.
XU J, JIANG Z X. Provenance analysis of clastic rocks: Current research status and prospect[J]. Journal of Palaeogeography, 2019, 21(3): 379-396.
4 TAYLOR S R, MCLENNAN S M. The Continental Crust: Its Composition and Evolution[M]. Oxford:Blackwell Scientific Publishers, 1985.
5 MCLENNAN S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[J]. Mineralogical Society of America, 1989, 21: 169-200.
6 ZHANG T F,CHENG X Y,WANG S Y, et al. Middle Jurassic-Early Cretaceous drastic paleoenvironmental changes in the Ordos Basin: Constraints on sandstone-type uranium mineralization[J].Ore Geology Reviews,2022,142:104652.
7 CAO J,WU M,CHEN Y,et al. Trace and rare earth elements geochemistry of Jurassic mudstones in the northern Qaidam Basin,Northwest China[J]. Geochemistry,2012,72:245-252.
8 ALLEGRE C J, MINSTER J F. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 1978, 38(1): 1-25.
9 NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299: 715-717.
10 NESBITT H W, YOUNG G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48: 1523-1534.
11 HISCOTT R N. Ophiolitic source rocks for Taconic-age flysch: Trace element evidence[J]. Geological Society of America, 1984, 95: 1261-1267.
12 BHATIA M R, CROOK K A. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J].Contributions to Mineralogy and Petrology,1986, 92(2):181-193.
13 FLOYD P, LEVERIDGE B. Tectonic environment of the Devonian Gramscatho Basin, South Cornwall: Framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society,1987,144(4):531-542.
14 HARNOIS L. The CIW index: A new chemical index of weathering[J]. Sedimentary Geology,1988,55(3-4):319-322.
15 ROSER B P, KORSCH R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology,1988,67(1):119-139.
16 MCLENNAN S M. Weathering and global denudation[J]. Journal of Geology,1993,101(2):295-303.
17 MCLENNAN S, HEMMING S, MCDANIEL D, et al. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Geological Society of America, 1993, 284: 21-40.
18 CULLERS R L. Implications of elemental concentrations for provenance,redox conditions,and metamorphic studies of sha-les and limestones near Pueblo, CO, USA[J]. Chemical Geology, 2002, 191: 305-327.
19 BAO C, CHEN Y L, LI D P, et al. Provenances of the Mesozoic sediments in the Ordos Basin and implications for collision between the North China Craton (NCC) and the South China Craton (SCC)[J]. Journal of Asian Earth Sciences, 2014, 96: 296-307.
20 TAO R, SHU X C, HAI L F, et al. Significance of sandstone provenance in tracking potential uranium reservoirs: A case study of the Middle Jurassic Zhiluo Formation, western Ordos Basin,northern China[J].Journal of Asian Earth Sciences,2022, 227: 105117.
21 蒋子文. 鄂尔多斯盆地南部上古生界山1—盒8段物源分析及盆山耦合关系研究[D]. 西安:西北大学, 2020: 1-238.
JIANG Z W. The Study of Provenance and Basin Mountain Coupling of Shan1-H8 Member, Upper Palaeozoic, Southern Ordos Basin[D]. Xi’an:Northwest University, 2020: 1-238.
22 SHI J, HUANG W H, CHEN J, et al. An effective geochemical method to identify provenance from sources with similar geology: A case study from Ordos Basin, China[J]. Applied Geochemistry,2020,121:104692.
23 LI Y, FAN A Q, YANG R C, et al. Braided deltas and diagenetic control on tight sandstone reservoirs: A case study on the Permian Lower Shihezi Formation in the southern Ordos Basin (central China)[J]. Sedimentary Geology,2022,435:106156.
24 LIU G Z, HU G C, SHI X Z, et al. Carbonate cementation patterns and diagenetic reservoir facies of the Triassic Yanchang Formation deep-water sandstone in the Huangling area of the Ordos Basin, Northwest China[J]. Journal of Petroleum Science and Engineering, 2021, 203(11): 108608.
25 白金莉,李文厚,刘江斌. 鄂尔多斯盆地旬邑地区长8段沉积储层特征[J]. 地质科学,2022,57(1):88-99.
BAI J L,LI W H,LIU J B,et al.The characteristics of sedimen-tary facies and reservoir of the Chang 8 Member in Xunyi area,Ordos Basin[J].Chinese Journal of Geology,2022,57(1):88-99.
26 王建其, 柳小明. X射线荧光光谱法分析不同类型岩石中10种主量元素的测试能力验证[J]. 岩矿测试, 2016, 35(2): 145-151.
WANG J Q, LIU X M. Proficiency testing of the XRF method for measuring 10 major elements in different rock types[J]. Rock and Mineral Analysis,2016,35(2):145-151.
27 赵娇. 华北克拉通中部古元代地质演化——来自吕梁杂岩岩浆、变质作用的证据[D]. 西安:西北大学, 2018:1-141.
ZHAO J. The Paleoproterozoic Tectonic Evolution of the Central Segment of the North China Craton-Constrained by Magmatic and Metamorphic Records of Lüliang Complex[D]. Xi’an: Northwest University, 2018:1-141.
28 刘晔, 柳小明, 胡兆初,等. ICP-MS测定地质样品中37个元素的准确度和长期稳定性分析[J]. 岩石学报, 2007,23(5): 1203-1210.
LIU Y, LIU X M, HU Z C, et al. Evaluation of accuracy and long-term stability of determination of 37 trace elements in geological samples by ICP-MS[J]. Acta Petrologica Sinica, 2007,23(5): 1203-1210.
29 PAN X, WANG Z L, LI Q Y, et al. Sedimentary environments and mechanism of organic matter enrichment of dark shales with low TOC in the Mesoproterozoic Cuizhuang Formation of the Ordos Basin: Evidence from petrology, organic geochemistry, and major and trace elements[J].Marine and Pe-troleum Geology,2020,122:104695.
30 PETTIJOHN F J, POTTER P E, SIEVER R. Sand and Sandstone[M]. Berlin: Springer-Verlag, 1972.
31 GUO Q J, SHIELDS G A, LIU C Q, et al. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the Early Cambrian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,254:194-216.
32 JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of paleoredox conditions in ancient mudstones[J]. Chemical Geology,1994,111(1/4):111-129.
33 HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian) stark shale member of the dennis limestone,Wabaunsee County, Kansas, USA[J]. Chemical Geology, 1992, 99(1-3): 65-82.
34 RIMMER S M.Geochemical paleoredox indicators in Devonian-Mississippian black shales,central Appalachian Basin(USA)[J]. Chemical Geology, 2004, 206: 373-391.
35 王淑芳,董大忠,王玉满,等. 四川盆地南部志留系龙马溪组富有机质页岩沉积环境的元素地球化学判别指标[J]. 海相油气地质,2014,19(3): 27-34.
WANG S F, DONG D Z, WANG Y M, et al. Geochemistry evaluation index of redox-sensitive elements for depositional environments of Silurian Longmaxi organic-rich shale in the south of Sichuan Basin[J]. Marine Orgin Petroleum Geology, 2014, 19(3): 27-34.
36 FU X G, WANG J, CHEN W B, et al. Elemental geochemistry of the Early Jurassic black shales in the Qiangtang Basin, eastern Tethys: Constraints for palaeoenvironment conditions[J]. Geological Journal, 2016, 51:443-454.
37 WANG Z W,WANG J,FU X G,et al. Geochemistry of the Upper Triassic black mudstones in the Qiangtang Basin,Tibet: Implications for paleoenvironment,provenance,and tectonic set-ting[J]. Journal of Asian Earth Sciences,2018,160:118-135.
38 WORASH G. Geochemistry provenance and tectonic setting of the Adigrat sandstone northern Ethiopia[J]. Journal of African Earth Sciences, 2002, 35: 185-198.
39 MA M, CHEN G, LI C, et al. Petrography and geochemistry of Oligocene to Lower Miocene sandstones in the Baiyun Sag, Pearl River Mouth Basin, South China Sea: Provenance, source area weathering, and tectonic setting[J]. Geological Journal, 2019, 54: 564-589.
40 FEDO C M, NESBITT H W, YOUNG G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols,with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23: 921-924.
41 SUN W, ZHOU M, YAN D, et al. Provenance and tectonic setting of the Neoproterozoic Yanbian Group, western Yangtze Block (SW China)[J]. Precambrian Research, 2008, 167(1-2): 213-236.
42 MCLENNAN S, TAYLOR S, MCCULLOCH M, et al. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites:Crustal evolution and plate tectonic associations[J]. Geochimica et Cosmochimica Acta, 1990, 54(7): 2015-2050.
43 AL-HARBI O A, KHAN M M. Provenance, diagenesis, tectonic setting and geochemistry of Tawil Sandstone (Lower Devonian) in central Saudi Arabia[J]. Journal of Asian Earth Sciences, 2008, 33: 278-287.
44 ARMSTRONG-ALTRIN J S, MACHAIN-CASTILLO M L, ROSALES-HOZ L, et al. Provenance and depositional history of continental slope sediments in the southwestern Gulf of Mexico unraveled by geochemical analysis[J]. Continental Shelf Research, 2015, 95: 15-26.
45 SHIELDS G, STILLE P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 2001, 175 (1-2): 29-48.
46 ADEPOJU S A, OJO O J, AKANDE S O, et al. Petrographic and geochemical constraints on petrofacies, provenance and tectonic setting of the Upper Cretaceous sandstones, northern Bida Basin, north-central Nigeria[J]. Journal of African Earth Sciences,2021,174:104041.
47 BHATIA M R. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology, 1983, 91: 611-627.
48 刘高红, 龚建涛, 王冬冬. 鄂尔多斯盆地旬邑地区延长组油源对比研究[J]. 石油天然气学报(江汉石油学院学报), 2014, 36(12):10-15.
LIU G H, GONG J T, WANG D D. Oil source correlation in Yanchang Formation in Xunyi area of Ordos Basin[J]. Journal Oil and Gas Technology, 2014, 36(12): 10-15.
[1] 张雷, 赵培华, 侯伟, 李树新, 李星涛, 吴陈君, 张琴, 肖玉峰, 刘雯, 刘丹, 封从军, 邱振. 鄂尔多斯盆地东缘山西组山23亚段泥页岩地球化学特征与沉积环境[J]. 天然气地球科学, 2023, 34(2): 181-193.
[2] 崔德艺,辛红刚,张亚东,淡卫东,陈俊霖,张珊,李家程,李树同. 鄂尔多斯盆地宁县地区长73亚段泥页岩地球化学特征及页岩油意义[J]. 天然气地球科学, 2023, 34(2): 210-225.
[3] 张珈毓,王晓锋,吴疆,王庆涛,孙宜朴,卢颖忠,张东东,刘文汇,邱万鎏. 鄂尔多斯盆地南部上古生界烃源岩生排烃特征及天然气勘探潜力[J]. 天然气地球科学, 2022, 33(9): 1433-1445.
[4] 王杰,贾会冲,孙晓,陶成,张毅,马亮帮,王付斌,姜海健. 鄂尔多斯盆地富县古生界天然气成因及气源综合识别[J]. 天然气地球科学, 2022, 33(9): 1476-1484.
[5] 张力文,吴陈君,黄道军,文志刚,赵伟波,席颖洋,张辉,孙璐,宋换新. 鄂尔多斯盆地东部石炭系本溪组泥页岩地球化学特征及沉积环境[J]. 天然气地球科学, 2022, 33(9): 1485-1498.
[6] 孙照通, 辛红刚, 吕成福, 冯胜斌, 周钱山, 淡卫东, 张英, 高雪, 党昭卿. 鄂尔多斯盆地长73亚段泥页岩型页岩油赋存状态与有机地球化学特征[J]. 天然气地球科学, 2022, 33(8): 1304-1318.
[7] 李旋,赵俊峰,王迪,胡超,赵旭东,王科,管斌,张海龙. 柴达木盆地西部地区早—中侏罗世沉积体系与古气候环境探讨[J]. 天然气地球科学, 2022, 33(7): 1060-1073.
[8] 高丽军,吴鹏,石雪峰,李勇,逄建东,杨铁梅. 海陆过渡相不同源储类型页岩储层关键参数测井识别及分类方法[J]. 天然气地球科学, 2022, 33(7): 1132-1143.
[9] 冯林杰, 蒋裕强, 武富礼, 武渝, 梁德民. 鄂尔多斯盆地延安西部地区马五1+2亚段正向低幅度构造成因及油气地质意义[J]. 天然气地球科学, 2022, 33(6): 944-954.
[10] 陈佳, 封从军, 俞天军, 陈刚, 唐明明, 孙萌思. 鄂尔多斯盆地延长气田Y113—Y133天然气井区盒8段致密储层物性下限[J]. 天然气地球科学, 2022, 33(6): 955-966.
[11] 崔晨光,张辉,刘文香,李仕芳,刘燕,宋换新,吴陈君,文志刚. 鄂尔多斯盆地东部本溪组一段泥页岩元素地球化学特征[J]. 天然气地球科学, 2022, 33(6): 1001-1012.
[12] 田继先, 纪宝强, 曾旭, 王晔桐, 李曜良, 孙国强. 柴北缘下干柴沟组深部碎屑岩储层发育特征及主控因素[J]. 天然气地球科学, 2022, 33(5): 720-730.
[13] 梁岳立,葛家旺,赵晓明,张喜,李树新,聂志宏. 鄂尔多斯盆地东缘山西组2段海陆过渡相页岩高分辨率层序划分及勘探地质意义[J]. 天然气地球科学, 2022, 33(3): 408-417.
[14] 王以城,张磊夫,邱振,彭思钟,封从军,孙萌思. 鄂尔多斯盆地东缘二叠系山23亚段海陆过渡相页岩岩相类型与储层发育特征[J]. 天然气地球科学, 2022, 33(3): 418-430.
[15] 谢卫东,王猛,王华,段宏跃. 海陆过渡相页岩气储层孔隙多尺度分形特征[J]. 天然气地球科学, 2022, 33(3): 451-460.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!