天然气地球科学 ›› 2023, Vol. 34 ›› Issue (2): 334–348.doi: 10.11764/j.issn.1672-1926.2022.09.006

• 非常规天然气 • 上一篇    下一篇

川东南盆缘复杂构造区深层页岩气富集特征

汪凯明()   

  1. 中国石化华东油气分公司勘探开发研究院,江苏 南京 210019
  • 收稿日期:2022-08-09 修回日期:2022-09-07 出版日期:2023-02-10 发布日期:2023-03-06
  • 作者简介:汪凯明(1982-),男,湖北云梦人,硕士,副研究员,主要从事油气地质综合研究及勘探开发规划工作.E-mail:kaiming214@126.com.
  • 基金资助:
    国家科技重大专项“大型油气田及煤层气开发”(2016ZX05061);中国石化科技项目“四川盆地及周缘矿权战略选区及评价”(P21086-2-6)

Enrichment characteristics of deep shale gas in tectonically complex regions of the southeastern Sichuan Basin

Kaiming WANG()   

  1. Research Institute of Exploration and Development,East China Branch of SINOPEC,Nanjing 210019,China
  • Received:2022-08-09 Revised:2022-09-07 Online:2023-02-10 Published:2023-03-06
  • Supported by:
    The China National Science and Technology Major Project(2016ZX05061);The Scientific and Technological Projects of SINOPEC(P21086-2-6)

摘要:

以川东南盆缘复杂构造区南川地区为研究对象,基于钻井、实验分析测试等资料,开展深层页岩气富集特征研究,重点讨论地层温度、地层压力等成藏环境变化对深层页岩气富集的影响作用。研究认为:①优势沉积相带是页岩气藏成烃的基础,研究区五峰组—龙马溪组一段形成于深水陆棚沉积环境,优质页岩发育,具备形成页岩气藏的良好物质条件。②有机碳含量控制纳米级有机质孔隙的发育程度,高压—超高压环境有利于孔隙的保持,对改善深层页岩物性发挥积极作用。③深层页岩气具有高温、高地应力的典型地质特征。温度较压力对页岩吸附能力的影响更为明显,深层页岩气赋存方式以游离气为主;高上覆地层压力导致页岩渗透率呈指数下降,页岩气运移能力显著减弱,逸散程度降低,有利于页岩气原位聚集。④温度、压力变化对气体扩散作用影响复杂,高温会增大气体的扩散系数,加剧气体的运移和逸散,而高压可以减缓或抑制气体的流动,有利于页岩气保存。⑤埋深与压力系数呈现一定的正相关性,埋深对向斜型页岩气藏压力系数的影响作用显著,表明深层向斜型页岩气保存条件趋好。埋深较大的残留向斜核部、凹中隆、有反向逆断层遮挡的斜坡区是复杂构造区页岩气勘探的有利目标。

关键词: 深层页岩气, 富集特征, 五峰组—龙马溪组, 地层温度, 地层压力, 构造复杂区

Abstract:

In recent years, deep shale gas exploration breakthroughs have been achieved in the Wufeng -Longmaxi formations in the complex tectonic region of the Sichuan Basin and southeastern margin, showing good prospects for deep shale gas exploration and development. Based on the data from drilling wells and experimental analysis tests, the study of deep shale gas enrichment characteristics is carried out in the Nanchuan area of the complex tectonic region of the southeastern Sichuan Basin margin, focusing on the role of changes in the formation environment such as formation temperature and pressure on deep shale gas enrichment. The study concludes that: (1) The dominant sedimentary phase zone is the basis for hydrocarbon formation in shale gas reservoirs. The Wufeng Formation - the first member of Longmaxi Formation in the study area was formed in a deep-water shelf sedimentary environment with high-quality shale development, which has good material conditions for the formation of shale gas reservoirs. (2) Organic carbon content controls the degree of development of nanoscale organic matter pores, and the high-pressure-ultra-high-pressure environment is conducive to the maintenance of pores and it plays a positive role in improving the physical properties of deep shale. (3) Deep shale gas has the typical geological characteristics of high temperature, high ground stress, and exceptionally low permeability. The influence of temperature on the adsorption capacity of shale is more obvious than that of pressure, and the deep shale gas is mainly free gas. High pressure can slow down or inhibit the gas flow, which is beneficial to shale gas preservation. (4)The changes of temperature and pressure have complex effects on gas diffusion. High temperature will increase the diffusion coefficient of gas, aggravate the migration and escape of gas, while high pressure can slow down or inhibit the flow of gas, which is beneficial to the preservation of shale gas. (5) The burial depth and pressure coefficient show a certain positive correlation, and the burial depth has a more significant effect on the pressure coefficient of syncline shale gas, indicating that the preservation conditions of deep syncline shale gas reservoirs have a tendency to become better. The residual syncline core with larger depths, inner-sag uplift, and slopes with reverse faults can be favorable targets for shale gas exploration in complex tectonic zones.

Key words: Deep shale gas, Enrichment characteristics, Wufeng Formation-Longmaxi Formation, Geothermal temperature, Formation pressure, Tectonically complex regions

中图分类号: 

  • TE122.2+3

图1

川东南盆缘复杂构造区位置(部分井位据文献[7,12,15])"

图2

南川地区五峰组底面构造特征(a)与典型地震剖面(b)"

图3

NY1井五峰组—龙马溪组一段页岩综合柱状图"

图4

NY1井五峰组—龙马溪组一段页岩孔隙特征纵向分布图"

图5

五峰组—龙马溪组一段页岩孔隙体积与比表面积关系"

图6

五峰组—龙马溪组一段页岩TOC与孔隙体积、比表面积关系"

图7

五峰组—龙马溪组一段页岩孔隙体积、比表面积与含气量关系"

图8

NY1井五峰组—龙马溪组一段页岩孔隙类型及发育特征(a)4 409.19 m,①号小层,有机质孔隙发育,孔隙直径100~400 nm,呈椭圆状、狭长不规则状;(b)4 363.83 m,⑥号小层,有机质孔隙较发育,孔隙边缘圆滑,呈椭圆状—圆状;(c)4 323.70 m,⑧号小层,黏土矿物晶间孔;(d)4 336.75 m,⑧号小层,黄铁矿晶间孔;(e)4 397.02 m,③号小层,粒内溶蚀孔;(f)4 363.83 m,⑥号小层,微裂缝,宽度大于1 μm,未被充填"

图9

五峰组—龙马溪组一段页岩TOC与总含气量关系"

图10

四川盆地及东南缘典型页岩气井五峰组—龙马溪组页岩深度与孔隙度关系(部分数据引自文献[15,34])"

图11

五峰组—龙马溪组页岩水平渗透率与垂直渗透率对比"

图12

五峰组—龙马溪组页岩覆压渗透率实验"

图13

背斜型、向斜型页岩气藏埋深与压力系数的关系"

图14

温度、压力与页岩吸附甲烷量的关系(据文献[35])"

图15

页岩气藏压力系数与游离气占比关系"

1 郭旭升.涪陵页岩气田焦石坝区块富集机理与勘探技术[M].北京:科学出版社,2014.
GUO X S. Enrichment Mechanism and Exploration Technology of Jiaoshiba Area in Fuling Shale Gas Field[M].Beijing: Science Press,2014.
2 郭旭升,胡东风,魏志红,等.涪陵页岩气田的发现与勘探认识[J].中国石油勘探,2016,21(3):24-37.
GUO X S,HU D F,WEI Z H, et al. Discovery and exploration of Fuling shale gas field[J].China Petroleum Exploration,2016,21(3):24-37.
3 赵文智,贾爱林,位云生,等.中国页岩气勘探开发进展及发展展望[J].中国石油勘探,2020,25(1):31-44.
ZHAO W Z,JIA A L,WEI Y S, et al. Progress in shale gas exploration in China and prospects for future development[J].China Petroleum Exploration,2020,25(1):31-44.
4 孙焕泉,周德华,蔡勋育,等.中国石化页岩气发展现状与趋势[J].中国石油勘探,2020,25(2):14-26.
SUN H Q,ZHOU D H,CAI X Y, et al. Progress and prospect of shale gas development of SINOPEC[J].China Petroleum Exploration,2020,25(2):14-26.
5 邹才能,董大忠,王玉满,等.中国页岩气特征、挑战及前景(二)[J].石油勘探与开发,2016,43(2):166-178.
ZOU C N,DONG D Z,WANG Y M, et al. Shale gas in China: Characteristics, challenges and prospects (II)[J].Petroleum Exploration and Development,2016,43(2):166-178.
6 张成林,张鉴,李武广,等.渝西大足区块五峰组—龙马溪组深层页岩储层特征与勘探前景[J].天然气地球科学,2019,30(12):1794-1804.
ZHANG C L,ZHANG J,LI W G, et al. Deep shale reservoir characteristics and exploration potential of Wufeng-Longmaxi formations in Dazu area, western Chongqing[J].Natural Gas Geoscience,2019,30(12):1794-1804.
7 李阳,薛兆杰,程喆,等.中国深层油气勘探开发进展与发展方向[J].中国石油勘探,2020,25(1):45-57.
LI Y,XUE Z J,CHENG Z, et al. Progress and development directions of deep oil and gas exploration and development in China[J].China Petroleum Exploration,2020,25(1):45-57.
8 邹才能,赵群,丛连铸,等.中国页岩气开发进展、潜力及前景[J].天然气工业,2021,41(1):1-14.
ZOU C N,ZHAO Q,CONG L Z, et al. Development progress,potential and prospect of shale gas in China[J].Natural Gas Industry,2021,41(1):1-14.
9 何骁,吴建发,雍锐,等.四川盆地长宁—威远区块海相页岩气田成藏条件及勘探开发关键技术[J].石油学报,2021,42(2):259-272.
HE X,WU J F,YONG R, et al. Accumulation conditions and key exploration and development technologies of marine shale gas field in Changning-Weiyuan block, Sichuan Basin[J].Acta Petrolei Sinica,2021,42(2):259-272.
10 郭旭升,蔡勋育,刘金连,等.中国石化“十三五”天然气勘探进展与前景展望[J].天然气工业,2021,41(8):12-22.
GUO X S,CAI X Y,LIU J L, et al. Natural gas exploration progress of SINOPEC during the 13th Five-Year Plan and prospect forecast during the 14th Five-Year Plan[J].Natural Gas Industry,2021,41(8):12-22.
11 杨跃明,陈玉龙,刘燊阳,等.四川盆地及其周缘页岩气勘探开发现状、潜力与展望[J].天然气工业,2021,41(1):42-58.
YANG Y M,CHEN Y L,LIU S Y, et al. Status, potential and prospect of shale gas exploration and development in the Sichuan Basin and its periphery[J].Natural Gas Industry,2021,41(1):42-58.
12 王红岩,施振生,孙莎莎,等.四川盆地及周缘志留系龙马溪组一段深层页岩储层特征及其成因[J].石油与天然气地质,2021,42(1):66-75.
WANG H Y,SHI Z S,SUN S S, et al. Characterization and genesis of deep shale reservoirs in the first member of the Silurian Longmaxi Formation in southern Sichuan Basin and its periphery[J].Oil & Gas Geology,2021,42(1):66-75.
13 郭彤楼.深层页岩气勘探开发进展与攻关方向[J].油气藏评价与开发,2021,11(1):1-6.
GUO T L. Progress and research direction of deep shale gas exploration and development[J].Reservoir Evaluation and Development,2021,11(1):1-6.
14 邹晓艳,李贤庆,王元,等.川南地区五峰组—龙马溪组深层页岩储层特征和含气性[J].天然气地球科学,2022,33(4):654-665.
ZOU X Y,LI X Q,WANG Y, et al. Reservoir characteristics and gas content of Wufeng-Longmaxi formations deep shale in southern Sichuan Basin[J]. Natural Gas Geoscience,2022,33(4):654-665.
15 郭旭升,腾格尔,魏祥峰,等.四川盆地深层海相页岩气赋存机理与勘探潜力[J].石油学报,2022,43(4):453-468.
GUO X S,TENGER,WEI X F, et al. Occurrence mechanism and exploration potential of deep marine shale gas in Sichuan Basin[J].Acta Petrolei Sinica,2022,43(4):453-468.
16 何希鹏,齐艳平,何贵松,等.渝东南构造复杂区常压页岩气富集高产主控因素再认识[J].油气藏评价与开发,2019,9(5):32-39.
HE X P,QI Y P,HE G S, et al. Further understanding of main controlling factors of normal pressure shale gas enrichment and high yield in the area with complex structure of the southeast area of Chongqing[J].Reservoir Evaluation and Development,2019,9(5):32-39.
17 何希鹏,王运海,王彦祺,等.渝东南盆缘转换带常压页岩气勘探实践[J].中国石油勘探,2020,25(1):126-136.
HE X P,WANG Y H,WANG Y Q, et al. Exploration practices of normal-pressure shale gas in the marginal transition zone of the Southeast Sichuan Basin[J].China Petroleum Exploration,2020,25(1):126-136.
18 汤济广,李豫,汪凯明,等.四川盆地东南地区龙马溪组页岩气有效保存区综合评价[J].天然气工业,2015,35(5):15-23.
TANG J G,LI Y,WANG K M, et al. Comprehensive evaluation of effective preservation zone of Longmaxi Formation shale gas in the Southeast Sichuan Basin[J].Natural Gas Industry,2015,35(5):15-23.
19 金之钧,袁玉松,刘全有,等.J3-K1构造事件对南方海相源盖成藏要素的控制作用[J].中国科学(地球科学),2012,42(12):1791-1801.
JIN Z J,YUAN Y S,LIU Q Y, et al. Controls of Late Jurassic-Early Cretaceous tectonic event on source rocks and seals in marine sequences, South China[J].Science China (Earth Sciences),2012,42(12):1791-1801.
20 牟传龙,周恳恳,梁薇,等.中上扬子地区早古生代烃源岩沉积环境与油气勘探[J].地质学报,2011,85(4):526-532.
MU C L, ZHOU K K,LIANG W, et al. Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze Region and petroleum and gas exploration[J].Acta Geologica Sinica,2011,85(4):526-532.
21 王玉满,董大忠,李新景,等.四川盆地及其周缘下志留统龙马溪组层序与沉积特征[J].天然气工业,2015,35(3):12-21.
WANG Y M,DONG D Z,LI X J, et al. Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in the Sichuan Basin and its peripheral areas[J].Natural Gas Industry,2015,35(3):12-21.
22 SING K S W. Reporting physosorption data for gas/solid systems with special reference to the determination of surface area and porosity, IUPAC[J].Pure and Applied Chemistry,1985,57(4):603-619.
23 郭旭升,李宇平,刘若冰,等.四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J].天然气工业,2014,34(6):9-16.
GUO X S,LI Y P,LIU R B, et al. Micro-pores structure characteristics and development control factors in Longmaxi Formation in Jiaoshiba area[J].Natural Gas Industry,2014,34(6):9-16.
24 郭旭升.南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J].地质学报,2014,88(7):1209-1218.
GUO X S. Rules of two-factor enrichment for marine shale gas in southern China: Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J].Acta Geologica Sinica,2014,88(7):1209-1218.
25 王志刚.涪陵页岩气勘探开发重大突破与启示[J].石油与天然气地质,2015,36(1):1-6.
WANG Z G. Breakthrough of Fuling shale gas exploration and development and its inspiration[J].Oil & Gas Geology,2015,36(1):1-6.
26 郭彤楼,张汉荣.四川盆地焦石坝页岩气田形成与富集高产模式[J].石油勘探与开发,2014,41(1):28-36.
GUO T L,ZHANG H R. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J].Petroleum Exploration and Development,2014,41(1):28-36.
27 金之钧,胡宗全,高波,等.川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J].地学前缘,2016,23(1):1-10.
JIN Z J,HU Z Q,GAO B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi formations, southeastern Sichuan Basin[J].Earth Science Frontiers,2016,23(1):1-10.
28 聂海宽,金之钧,边瑞康,等.四川盆地及其周缘上奥陶统五峰组—下志留统龙马溪组页岩气“源—盖控藏”富集[J].石油学报,2016,37(5):557-571.
NIE H K,JIN Z J,BIAN R K, et al. The “source-cap hydrocarbon-controlling” enrichment of shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and its periphery[J].Acta Petrolei Sinica,2016,37(5):557-571.
29 何希鹏,高玉巧,唐显春,等.渝东南地区常压页岩气富集主控因素分析[J].天然气地球科学,2017,28(4):654-664.
HE X P,GAO Y Q,TANG X C, et al. Analysis of major factors controlling the accumulation in normal pressure shale gas in the Southeast of Chongqing[J]. Natural Gas Geoscience,2017,28(4):654-664.
30 郭旭升,赵永强,申宝剑,等.中国南方海相页岩气勘探理论:回顾与展望[J].地质学报,2022,96(1):172-182.
GUO X S,ZHAO Y Q,SHEN B J, et al. Marine shale gas exploration theory in southern China: Review and prospects[J].Acta Geologica Sinica,2022,96(1):172-182.
31 李双建,袁玉松,孙炜,等.四川盆地志留系页岩气超压形成与破坏机理及主控因素[J].天然气地球科学,2016,27(5):924-931.
LI S J,YUAN Y S,SUN W, et al. The formation and destroyment mechanism of shale gas overpressure and its main controlling factors in Silurian of Sichuan Basin[J].Natural Gas Geoscience,2016,27(5):924-931.
32 方志雄.中国南方常压页岩气勘探开发面临的挑战及对策[J].油气藏评价与开发,2019,9(5):1-13.
FANG Z X. Challenges and countermeasures for exploration and development of normal pressure shale gas in southern China[J].Reservoir Evaluation and Development,2019,9(5):1-13.
33 汪凯明.下扬子皖南地区下寒武统页岩气地质特征及成藏控制因素[J].中国石油勘探,2021,26(5):83-99.
WANG K M. Geological characteristics and controlling factors of shale gas accumulation of the Lower Cambrian in the southern Anhui of Lower Yangtze area[J].China Petroleum Exploration,2021,26(5):83-99.
34 何治亮,聂海宽,胡东风,等.深层页岩气有效开发中的地质问题——以四川盆地及其周缘五峰组—龙马溪组为例[J].石油学报,2020,41(4):379-391.
HE Z L,NIE H K,HU D F, et al. Geological problems in the effective development of deep shale gas: A case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Sichuan Basin and its periphery[J].Acta Petrolei Sinica,2020,41(4):379-391.
35 ROSS D J K,BUSTIN R M. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the western Canada sedimentary basin: Application of an integrated formation evaluation[J].AAPG Bulletin,2008,92(1):87-125.
36 李传亮,张景廉,杜志敏.油气初次运移理论新探[J].地学前缘,2007,14(6):132-142.
LI C L,ZHANG J L,DU Z M. New viewpoints of the primary migration of oil and gas[J].Earth Science Frontiers,2007,14(4):132-142.
37 马新华.非常规天然气“极限动用”开发理论与实践[J].石油勘探与开发,2021,48(2):326-336.
MA X H. “Extreme utilization” development theory of unconventional natural gas[J]. Petroleum Exploration and Development,2021,48(2):326-336.
38 付广,杨勉,刘文龙.浓度对天然气发生扩散作用的影响[J].天然气地球科学,2000,11(1):22-27.
FU G,YANG M,LIU W L. Discuss on concentration of gas diffusion[J].Natural Gas Geoscience,2000,11(1):22-27.
39 王国建,袁玉松,李武,等.天然气扩散系数研究现状及存在问题[J].天然气地球科学,2021,32(3):372-381.
WANG G J,YUAN Y S,LI W, et al. Current situation and existing problems in research of natural gas diffusion coefficient[J].Natural Gas Geoscience,2021,32(3):372-381.
40 SCHLOEMER S,KROOSS B M. Molecular transport of methane, ethane and nitrogen and the influence of diffusion on the chemical and isotopic composition of natural gas accumulations[J].Geofluids,2004(4):81-108.
[1] 王奕松,胡瀚文,石富伦,林瑞钦,刘达冬,冯霞,张大权,周喆,赵福平,孙钊,陈祎,杜威. 黔北地区五峰组—龙马溪组页岩气成藏过程及勘探启示:来自流体包裹体的证据[J]. 天然气地球科学, 2023, 34(1): 140-152.
[2] 唐令,宋岩,陈晓智,姜振学,张帆,李倩文,马晓强. 页岩气选区评价关键参数及上下限[J]. 天然气地球科学, 2023, 34(1): 153-168.
[3] 马军,房大志,张培先,谷红陶,胡春锋,卢比,程轶妍,高全芳,万静雅. 渝东南地区阳春沟构造带五峰组—龙马溪组页岩构造裂缝特征及形成期次解析[J]. 天然气地球科学, 2022, 33(7): 1117-1131.
[4] 周晓峰, 李熙喆, 郭伟, 张晓伟, 梁萍萍, 于均民. 四川盆地五峰组—龙马溪组页岩储层中碳酸盐矿物特征、形成机制及对储层物性影响[J]. 天然气地球科学, 2022, 33(5): 775-788.
[5] 吴建发, 赵圣贤, 张瑛堃, 夏自强, 李博, 苑术生, 张鉴, 张成林, 何沅翰, 陈尚斌. 深层页岩气储层物质组成与孔隙贡献及其勘探开发意义[J]. 天然气地球科学, 2022, 33(4): 642-653.
[6] 邹晓艳, 李贤庆, 王元, 张吉振, 赵佩. 川南地区五峰组—龙马溪组深层页岩储层特征和含气性[J]. 天然气地球科学, 2022, 33(4): 654-665.
[7] 赵少泽, 李勇, 程乐利, 聂舟, 王同, 吴朝容, 耿茂宇. 上扬子地区五峰组—龙马溪组黑色页岩高频层序划分[J]. 天然气地球科学, 2022, 33(11): 1808-1818.
[8] 李剑, 王晓波, 侯连华, 陈昌, 国建英, 杨春龙, 王义凤, 李志生, 崔会英, 郝爱胜, 张璐. 四川盆地页岩气地球化学特征及资源潜力[J]. 天然气地球科学, 2021, 32(8): 1093-1106.
[9] 张光荣, 聂海宽, 唐玄, 李东晖, 孙川翔, 张培先. 基于有机孔和生物成因硅优选页岩气富集高产层段的方法及应用[J]. 天然气地球科学, 2021, 32(6): 888-898.
[10] 张成林, 赵圣贤, 张鉴, 常程, 夏自强, 曹埒焰, 田冲, 冯江荣, 方圆, 周翊. 川南地区深层页岩气富集条件差异分析与启示[J]. 天然气地球科学, 2021, 32(2): 248-261.
[11] 刘海涛, 胡素云, 李建忠, 王居峰, 王群一 , 姜文亚, 江涛, 赵长毅 , 张春明, 吴丰成. 渤海湾断陷湖盆页岩油富集控制因素及勘探潜力[J]. 天然气地球科学, 2019, 30(8): 1190-1198.
[12] 李阳, 倪小明, 王延斌, 陶传奇. 鄂尔多斯盆地临兴地区上古生界压力特征及其成因机制[J]. 天然气地球科学, 2019, 30(7): 997-1005.
[13] 杨振恒, 韩志艳, 腾格尔, 熊亮, 申宝剑, 张庆珍, 史洪亮, 魏力民, 李艳芳, . 四川盆地南部五峰组—龙马溪组页岩地质甜点层特征——以威远—荣昌区块为例[J]. 天然气地球科学, 2019, 30(7): 1037-1044.
[14] 王秀平, 牟传龙, 肖朝晖 , 郑斌嵩 , 陈尧 , 王启宇. 鄂西南地区五峰组—龙马溪组连续沉积特征[J]. 天然气地球科学, 2019, 30(5): 635-651.
[15] 张成林,张鉴,李武广,田冲,罗超,赵圣贤,钟文雯. 渝西大足区块五峰组—龙马溪组深层页岩储层特征与勘探前景[J]. 天然气地球科学, 2019, 30(12): 1794-1804.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!