天然气地球科学 ›› 2023, Vol. 34 ›› Issue (2): 326–333.doi: 10.11764/j.issn.1672-1926.2022.09.004

• 非常规天然气 • 上一篇    下一篇

考虑到吸附气所占空间的页岩气资源/储量计算方法

赵群1,2(),王红岩1,2,丛连铸3,张琴1,2,邱振1,2,程峰1,2,周天琪1,2   

  1. 1.中国石油勘探开发研究院,北京 100083
    2.国家能源页岩气研发(实验)中心,河北 廊坊 065007
    3.中国石油油气和新能源分公司,北京 100007
  • 收稿日期:2022-06-02 修回日期:2022-09-05 出版日期:2023-02-10 发布日期:2023-03-06
  • 作者简介:赵群(1979-),男,辽宁营口人,博士,高级工程师,主要从事页岩气选区评价及非常规油气资源规划战略研究.E-mail:zhaoqun69@petrochina.com.cn.
  • 基金资助:
    “十四五” 中国石油上游领域前瞻性基础性科技项目“海相页岩气勘探开发技术研究”(2021DJ19);“页岩气开发区地质活动性评价技术研究”(2022DJ80)

Shale gas resources/reserves calculation method considering the space taken by adsorbed gas

Qun ZHAO1,2(),Hongyan WANG1,2,Lianzhu CONG3,Qin ZHANG1,2,Zhen QIU1,2,Feng CHENG1,2,Tianqi ZHOU1,2   

  1. 1.PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China
    2.National Energy Shale Gas R&D (Experiment) Center,Langfang 065007,China
    3.CNPC Oil,Gas & New Energies Group,Beijing 100007,China
  • Received:2022-06-02 Revised:2022-09-05 Online:2023-02-10 Published:2023-03-06
  • Supported by:
    The Prospective Basic Projects in the Upstream Field of PetroChina during the “Fourteenth Five-Year Plan”(2021DJ19);the Prospective Basic Science and Technology Project of PetroChina(2022DJ80)

摘要:

页岩气资源落实是中国未来天然气产量增长的最现实领域,页岩气资源/储量作为页岩气开发的基础,是页岩气开发方案编制、规划战略制定等的重要依据之一。现行页岩气资源/储量计算方法中普遍采用体积法计算吸附气储量和容积法计算游离气储量,但2种方法都没有考虑到吸附气和游离气共同储集在页岩微观孔隙中的情景,因此在游离气计算过程中应该扣除吸附气所占的孔隙体积。在页岩储层孔隙结构与页岩气赋存状态分析的基础上,建立了新的页岩孔隙与页岩气赋存状态模型和页岩气储层岩石物理模型,并进一步据此建立了符合页岩气储集特征的资源/储量计算的新方法。以四川盆地南部泸州海相和鄂尔多斯盆地东缘海陆过渡相页岩气评价井为例,对比了新方法与现行常规方法计算结果的差异性,现行方法高估了页岩气地质储量20%以上。与海相页岩相比,海陆过渡相页岩总孔隙度偏低,扣除吸附气所占孔隙空间,游离气含量占比仅为12%,游离气含量偏低成为单井产量偏低的原因之一。

关键词: 页岩气, 资源/储量, 岩石物理模型, 吸附气, 游离气, 储量丰度

Abstract:

Confirmation of shale gas resources is the most realistic field for the future growth of natural gas production in China. The quantity of shale gas resources/reserves, fundamental in shale gas development, is one of the important bases for making development plans and strategies. In current shale gas resource/reserve calculation method, the volume method is used to calculate the adsorbed gas reserves and the free gas reserves. This method, however, does not take into account the co-existence of adsorbed gas and free gas in shale pores, in which case the free gas reserves should be estimated by deducting the pore volume occupied by the adsorbed gas. For evaluating the shale gas resources/reserves, the new model of shale pore and shale gas occurrence and the new petrophysical model of shale gas reservoir have been established. Based on the new models, a new method of shale gas resources/reserves estimation in line with the characteristics of shale gas reservoir was established. Taking the appraisal wells of marine shale gas reservoirs in Luzhou and marine-continental transitional shale gas reservoirs in the eastern Ordos Basin as examples, the calculation results of the new proposed method and the existing method were compared. It is found that the methods in the current practice overestimate the geological reserves of shale gas by more than 20%. Compared with marine shale, marine-continental transitional shale has a relatively low porosity, where the content of free gas is only 12% if the pore space occupied by adsorbed gas is deducted. Such a low content of free gas is one of the causes for low well productivity in marine-continental transitional shale.

Key words: Shale gas, Resources/reserves, Petrophysical model, Adsorbed gas, Free gas, Reserve abundance

中图分类号: 

  • TE132.2

图1

五峰组—龙马溪组页岩微米—纳米孔隙"

图2

五峰组—龙马溪组页岩宏观裂缝"

图3

龙马溪组页岩样品纳米CT扫描结果"

图4

页岩孔隙与页岩气赋存状态模型示意"

图5

常规油气储层(a)和页岩气储层(b)岩石物理模型对比"

表1

泸州区块某评价井TOC大于3%的龙马溪组页岩气储量丰度计算对比"

埋深/m

TOC

/%

密度

/(t/m3

孔隙度

/%

含水

饱和度

/%

吸附气

含量

/(m3/t)

吸附气

丰度

/(108 m3

/km2

不考虑吸附气所占空间考虑吸附气所占空间

游离气

含量

/(m3/t)

游离气丰度/(108 m3

/km2

总储量丰度/(108 m3

/km2

吸附气

孔隙度

/%

游离气

含量

/(m3/t)

游离气丰度/(108 m3

/km2

总储量丰度/(108 m3

/km2

13 763.263.072.554.0243.220.8380.0203.5380.0850.1050.6582.5180.0600.080
23 764.203.422.474.2536.900.9380.0204.2920.0910.1110.7143.1500.0670.087
33 765.063.612.504.5241.280.9480.0214.1960.0910.1120.7303.0420.0660.087
43 765.934.052.495.2039.191.0440.0245.0200.1160.1400.8013.7480.0870.111
53 766.864.302.465.3235.181.1280.0275.5410.1310.1570.8554.1680.0980.125
63 767.823.712.485.8837.210.9910.0155.8850.0890.1040.7574.6780.0710.086
73 768.434.262.466.4235.601.1150.0126.6430.0700.0820.8455.2860.0560.068
83 768.865.452.378.1419.551.6640.01710.9220.1090.1251.2158.8960.0890.105
93 769.285.132.387.6921.361.5390.01410.0440.0930.1081.1288.1700.0760.090
103 769.674.332.405.2118.251.4180.0147.0150.0710.0851.0485.2880.0530.068
113 770.094.352.406.5813.581.5440.0149.3650.0850.0991.1417.4860.0680.082
123 770.474.102.473.6021.851.2850.0144.5020.0480.0610.9782.9380.0310.045
133 770.904.412.476.2123.701.3200.0137.5830.0770.0901.0045.9760.0610.074
143 771.314.592.426.7220.071.4400.0148.7730.0870.1011.0737.0200.0700.084
153 771.725.572.416.3918.151.7330.0168.5780.0790.0941.2866.4680.0590.075
163 772.104.892.466.6224.401.4160.0148.0420.0810.0951.0736.3170.0640.078
173 772.514.742.506.5328.611.3050.0137.3710.0760.0891.0055.7820.0590.073
183 772.924.562.405.6517.541.4940.0227.6730.1100.1321.1045.8550.0840.106
193 773.525.022.417.6019.491.5590.01510.0360.0970.1121.1578.1380.0780.093
203 773.924.492.417.9520.431.4070.01210.3750.0900.1021.0458.6620.0750.087
213 774.285.012.417.6316.001.6510.01410.5120.0890.1031.2268.5020.0720.086
223 774.635.122.407.5516.551.6640.02210.3770.1390.1621.2308.3520.1120.135
233 775.195.112.436.7518.041.6210.0168.9990.0900.1061.2137.0260.0700.086
243 775.604.982.418.0618.311.5800.01610.7990.1090.1251.1738.8760.0900.106
253 776.024.552.398.4318.841.4600.01411.3150.1050.1191.0759.5380.0890.103
263 776.415.062.496.9832.291.3160.0137.5030.0730.0861.0105.9000.0570.070
273 776.804.592.477.2120.951.4190.0149.1210.0920.1071.0807.3930.0750.089
283 777.215.032.428.0031.211.3260.0138.9890.0850.0970.9887.3740.0700.082
合计0.4532.5583.0112.0072.460
平均3 771.254.562.446.4725.281.3637.9651.0226.305

表2

鄂东某井山23亚段页岩气储量丰度计算对比"

埋深/m

TOC

/%

密度

/(t/m3

孔隙度

/%

含水

饱和度

/%

吸附气

含量

/(m3/t)

吸附气丰度/(108 m3

/km2

不考虑吸附气所占空间考虑吸附气所占空间

游离气

含量

/(m3/t)

游离气丰度/(108 m3

/km2

总储量丰度/(108 m3

/km2

吸附气孔隙度

/%

游离气含量

/(m3/t)

游离气丰度/(108 m3

/km2

总储量丰度/(108 m3

/km2

11 848.173.322.651.39401.1120.0160.4530.0060.0220.5670.1450.0020.018
21 848.714.302.632.01401.3660.0210.6600.0100.0310.6920.2820.0040.026
31 849.302.302.761.68401.3160.0220.5260.0090.0310.6990.1610.0030.024
41 849.904.892.791.85401.1890.0200.5730.0100.0290.6390.2430.0040.024
51 850.502.982.621.59401.0950.0240.5240.0120.0360.5520.2210.0050.029
61 851.352.422.621.01401.2060.1560.3330.0430.2000.608-0.0010.0000.156
71 856.302.722.652.99401.4540.0290.9750.0190.0480.7420.5720.0110.040
81 857.0428.202.755.29405.5960.1371.6620.0410.1782.9630.1110.0030.140
91 857.935.412.663.36402.0410.0341.0910.0180.0521.0450.5260.0090.043
101 858.564.742.681.73401.1560.0090.5580.0040.0130.5960.2370.0020.011
合计0.4680.1720.6400.0430.511
平均1 852.786.132.682.2940.001.7530.7360.9100.250
1 U.S. Energy Information Administration (EIA). Natural Gas Weekly Update[EB/OL]. [2022-03-03]. https://www.eia.gov/naturalgas/weekly/.
2 CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin,2002,86 (11):1921-1938.
3 施振生,孙莎莎. 海相页岩层理及孔隙特征[M]. 北京:石油工业出版社,2020:1-191.
SHI Z S, SUN S S. Bedding Types and Pore Characters of Marine Shale[M]. Beijing: Petroleum Industry Press, 2020:1-191.
4 AMBROSE R J, HARTMAN R C, DIAZ-CAMPOS M, et al. New Pore-scale Considerations for Shale Gas-in-Place Calculations[C].SPE 131772. Paper Presentation at the SPE Unconventional Gas Conference held in Pittsburgh, USA: Pennsylvania, 23-25 February 2010.
5 邹才能,赵群,董大忠,等.页岩气基本特征、主要挑战与未来前景[J].天然气地球科学,2017,28(12): 1781-1796.
ZOU C N, ZHAO Q, DONG D Z, et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience,2017, 28(12):1781-1796.
6 邹才能,赵群,丛连铸,等.中国页岩气开发进展、潜力及前景[J].天然气工业,2021, 41(1): 1-14.
ZOU C N, ZHAO Q, CONG L Z, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14.
7 邹才能,董大忠, 蔚远江,等. 海相页岩气[M]. 北京:科学出版社, 2021.
ZOU C N, DONG D Z, YU Y J, et al. Marine Shale Gas [M]. Beijing: Science Press, 2021.
8 张琴,梁峰,梁萍萍,等.页岩分形特征及主控因素研究——以威远页岩气田龙马溪组页岩为例[J]. 天然气工业, 2019, 39(1): 78-84.
ZHANG Q, LIANG F, LIANG P P, et al. Study on shale fractal characteristics and main controlling factors:A case study of Longmaxi Formation shale in Weiyuan Shale Gas Field[J].Natural Gas Industry, 2019, 39(1): 78-84.
9 LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79:848-861.
10 CURTIS M E,AMBROSE R J,SONDERGELD C H, et al. Investigation of the relationship between organic porosity and thermal maturity in the Marcellus Shale[C].SPE 144370. SPE North American Unconventional Gas Conference and Exhibition held in The Woodlands, USA :Texas, 14-16 June 2011.
11 DUAN X G, HU Z M, SHAO N, et al. Establishment of a new slip permeability model of gas flow in shale nanopores based on experimental and molecular dynamics simulations studies[J].Journal of Petroleum Science and Engineering,2020, 193:107365.
12 DUAN X G, HU Z M, CAI C H, et al. A new method for correcting shale high-pressure adsorption curves based on instantaneous adsorption capacity[J]. SPE Journal,2021,26(1):435-447.
13 邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(一) [J]. 石油勘探与开发, 2015, 42(6): 689-701.
ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China: Characteristics, challenges and prospects (Ⅰ) [J].Petroleum Exploration and Development, 2015, 42(6): 689-701.
14 邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(二) [J]. 石油勘探与开发, 2016, 43(2):166-178.
ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China: Characteristics, challenges and prospects (II) [J].Petroleum Exploration and Development, 2016, 43(2):166-178.
15 国土资源部.页岩气资源储量计算与评价技术规范(DZT 0254—2014)[S].北京:国家标准出版社,2014.
Ministry of Land and Resources. Technical Specification for Calculation and Evaluation of Shale Gas Reserves (DZT0254-2014)[S]. Beijing: National Standard Press,2014.
16 自然资源部.页岩气资源储量计算与评价技术规范(DZT0254—2020)[S].北京:国家标准出版社,2020.
Department of Natural Resources. Technical Specification for Calculation and Evaluation of Shale Gas Reserves (DZT 0254-2020)[S]. Beijing: National Standard Press,2020.
[1] 汪凯明. 川东南盆缘复杂构造区深层页岩气富集特征[J]. 天然气地球科学, 2023, 34(2): 334-348.
[2] 曹涛涛, 邓模, 肖娟宜, 刘虎, 潘安阳, 曹清古. 海陆过渡相页岩储层特征及含气赋存机理——基于与海相页岩储层对比的认识[J]. 天然气地球科学, 2023, 34(1): 122-139.
[3] 李泽帆,陈相霖,李树刚,郭睿良,李泳,刘鹏. 高—过成熟页岩CH4/N2/CO2混合气体竞争吸附特征与地质意义[J]. 天然气地球科学, 2023, 34(1): 169-180.
[4] 刘洪林,刘德勋,李晓波. 四川盆地威远页岩气开发成熟区加密井可采储量概率法评估[J]. 天然气地球科学, 2023, 34(1): 74-82.
[5] 耿殿英, 杨兆彪, 李庚, 易同生, 姜秉仁, 金军. 黔西北威宁地区龙参1井下石炭统旧司组—祥摆组海相页岩气储层物性及含气性特征[J]. 天然气地球科学, 2022, 33(8): 1226-1239.
[6] 张东涛, 呼赞同, 何叶, 闫亚蕾. 水平井地质导向难点及对策分析[J]. 天然气地球科学, 2022, 33(8): 1354-1362.
[7] 高丽军,吴鹏,石雪峰,李勇,逄建东,杨铁梅. 海陆过渡相不同源储类型页岩储层关键参数测井识别及分类方法[J]. 天然气地球科学, 2022, 33(7): 1132-1143.
[8] 熊亮, 杨振恒, 申宝剑, 卢龙飞, 魏力民, 王濡岳, 庞河清. 川南威荣地区五峰组—龙马溪组深层页岩气微观储集空间发育特征及意义[J]. 天然气地球科学, 2022, 33(6): 860-872.
[9] 李维, 张海杰, 罗彤彤, 吴伟, 蒋琳, 钟铮, 蒋裕强, 付永红, 蔡光银. 渝西地区页岩储层微观孔隙结构对页岩气赋存影响[J]. 天然气地球科学, 2022, 33(6): 873-885.
[10] 梁峰, 姜巍, 戴赟, 陈禹, 罗超, 张琴, 佟恺林, 胡曦, 卢斌. 四川盆地威远—资阳地区筇竹寺组页岩气富集规律及勘探开发潜力[J]. 天然气地球科学, 2022, 33(5): 755-763.
[11] 樊怀才, 张鉴, 岳圣杰, 胡浩然. 页岩气平台式井组井间干扰影响因素分析及井距优化[J]. 天然气地球科学, 2022, 33(4): 512-519.
[12] 吴建发, 赵圣贤, 张瑛堃, 夏自强, 李博, 苑术生, 张鉴, 张成林, 何沅翰, 陈尚斌. 深层页岩气储层物质组成与孔隙贡献及其勘探开发意义[J]. 天然气地球科学, 2022, 33(4): 642-653.
[13] 邹晓艳, 李贤庆, 王元, 张吉振, 赵佩. 川南地区五峰组—龙马溪组深层页岩储层特征和含气性[J]. 天然气地球科学, 2022, 33(4): 654-665.
[14] 张琴,邱振,张磊夫,王玉满,肖玉峰,刘丹,刘雯,李树新,李星涛. 海陆过渡相页岩气储层特征与主控因素——以鄂尔多斯盆地大宁—吉县区块二叠系山西组为例[J]. 天然气地球科学, 2022, 33(3): 396-407.
[15] 王鹏威,刘光祥,刘忠宝,陈筱,李鹏,蔡钡钡. 川东南—黔西北地区上二叠统龙潭组海陆过渡相页岩气富集条件及主控因素[J]. 天然气地球科学, 2022, 33(3): 431-440.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!