天然气地球科学 ›› 2023, Vol. 34 ›› Issue (2): 253–270.doi: 10.11764/j.issn.1672-1926.2022.08.005

• 天然气地质学 • 上一篇    下一篇

准噶尔盆地致密砾岩储层特征及“甜点”预测——以中佳地区佳木河组二段一砂组储层为例

杨川(),李啸,吴涛(),宋明星,刘念周,贾开富,董桂彤,费李莹   

  1. 中国石油新疆油田分公司勘探开发研究院,新疆 克拉玛依 834000
  • 收稿日期:2022-07-08 修回日期:2022-08-11 出版日期:2023-02-10 发布日期:2023-03-06
  • 通讯作者: 吴涛 E-mail:yangchauan1993@163.com;wutao33@petrochina.com.cn
  • 作者简介:杨川(1993-),男,重庆长寿人,硕士,工程师,主要从事油气综合地质研究.E-mail:yangchauan1993@163.com.
  • 基金资助:
    国家科技重大专项“岩性地层油气藏成藏规律、关键技术及目标评价”(2017ZX05001-004);中国石油重大科技专项“复杂气藏有效开发及稳产关键技术研究与应用”(2017E-0410);中国石油“十四五”前瞻性基础性技术攻关项目“岩性地层油气藏成藏规律与关键技术研究”(2021DJ0405)

Characteristics and "sweet spot" prediction of tight conglomerate reservoir: Case study of the first sand group of the second member of Jiamuhe Formation in the Zhongjia area, Junggar Basin

Chuan YANG(),Xiao LI,Tao WU(),Mingxing SONG,Nianzhou LIU,Kaifu JIA,Guitong DONG,Liying FEI   

  1. Research Institute of Exploration and Development,Xinjiang Oilfield Company,PetroChina,Karamay 834000,China
  • Received:2022-07-08 Revised:2022-08-11 Online:2023-02-10 Published:2023-03-06
  • Contact: Tao WU E-mail:yangchauan1993@163.com;wutao33@petrochina.com.cn
  • Supported by:
    The China National Science and Technology Major Project(2017ZX05001-004);the Major Science and Technology Projects of CNPC(2017E-0410);the Forward Looking Basic Technology Research Projects of The 14th Five-Year Plan of CNPC(2021DJ0405)

摘要:

准噶尔盆地西北缘中佳地区佳木河组二段一砂组致密砾岩储层厚度大,分布范围广,试油气结果不理想,储层“甜点”区分布规律不清。基于录测井、分析化验以及叠前三维地震等多种资料,建立地质“甜点”与工程“甜点”判别参数,揭示“甜点”特征与采气能力相关关系,优选“甜点”表征参数,进行储层“甜点”预测及评价。研究结果表明:中佳地区佳木河组二段一砂组储层为低孔隙度、特低渗透率的致密砾岩储层,渗流条件整体偏差。致密砾岩储层脆性指数普遍大于60%,储层可压性好,更容易获得高产。“甜点”区储层具有低伽马值、高电阻率、低密度、低中子孔隙度、高声波时差值、较高孔渗,高含气饱和度,低纵横波速度比、低波阻抗以及脆性指数值较高的特征。依据储层综合评价分类特征结合纵横波速度比、孔隙度及脆性指数参数反演结果识别刻画2类“甜点”区分布范围,其中Ⅰ类“甜点”区分布在扇三角洲内前缘相带中的中佳7—新光1井区,总面积达50 km2;Ⅱ类“甜点”区主要分布于中佳7—新光1井区外围区,面积达48 km2。部署在Ⅰ类“甜点”区的ZJHW201井获得日产70×104 m3高产气流,推动了准噶尔盆地二叠系厚层致密砾岩气藏的勘探开发,对进一步助推新疆油田天然气业务加快发展具有重要意义。

关键词: “甜点”预测, 致密砾岩储层, 佳木河组二段一砂组, 中佳地区, 准噶尔盆地

Abstract:

The tight conglomerate reservoir of the first sand group of the second member of Jiamuhe Formation in the Zhongjia area of the northwest margin of the Junggar Basin had a large thickness and wide distribution. The test results of oil and gas were not satisfactory,and the distribution pattern of reservoir “sweet spot”area was unclear. Based on logging,analysis and assay,and pre-stack 3D seismic data, the discriminatory parameters of geological“sweet spot”and engineering“sweet spot” were established. The relationship between “sweet spot” characteristics and gas recovery capacity was revealed,and the“sweet spot”characterization parameters were selected for reservoir “sweet spot” prediction and evaluation.The results showed that the reservoir was a tight conglomerate reservoir with low porosity and exceptionally low permeability of the first sand group of the second member of Jiamuhe Formation in the Zhongjia area,and the seepage conditions were deviated overall. The reservoir brittleness characteristic index was generally greater than 60%,“sweet spots” were identified by combining longitudinal and transverse wave velocity reflecting better reservoir compressibility and more likely to obtain high production.The “sweet spot” reservoir had low gamma,high resistivity,low density,low neutron porosity, high acoustic time difference,high pore permeability,high gas saturation,low longitudinal to transverse velocity ratio, low wave impedance, and high brittleness index value. Based on the comprehensive evaluation of reservoir classification characteristics combined with the inversion results of longitudinal and transverse wave velocity ratio, porosity and brittleness index parameters, the distribution range of the two types of “sweet spot” areas were identified and characterized.The Type I “sweet spot” was located in the Zhongjia 7-Xinguang 1 well area in the fan delta's inner frontal phase zone,with a total area of 50 km2;the Type II “sweet spot”was mainly located in the peripheral area of the Zhongjia 7-Xinguang 1 well area,with an area of 48 km2.The Well ZJHW201, deployed in the Class I “sweet spot” area, obtained 700 000 m3 of high production gas flow, which promoted the exploration and development of thick Permian tight conglomerate gas reservoirs in the Junggar Basin, and was of great significance to further promote the accelerated development of natural gas business in Xinjiang Oilfield Company.

Key words: “Sweet spot” prediction, Tight conglomerate reservoir, The first sand group of the second member of Jiamuhe Formation, Zhongjia area, Junggar Basin

中图分类号: 

  • TE122.2

图1

研究区构造位置及地层特征"

图2

过拐5井—拐201井佳木河组二段一砂组沉积相剖面"

图3

中佳地区佳木河组二段一砂组岩性特征"

图4

中佳地区佳木河组二段一砂组岩心特征(a)新光1井,4 552.67~4 560.53 m,砾岩;(b)新光1井,4 583.41~4 592.51 m,砾岩;(c)ZJHW201井,5 603.76~5 608.35 m,砾岩,第6块岩心;(d)ZJHW201井,5 603.76~5 608.35 m,砾岩,第22块岩心"

图5

中佳地区佳木河组二段一砂组储集空间类型及特征(a)新光1井,4 558.06 m,粒内溶孔,面孔率0.03%;(b)新光1井,4 586.42 m,粒间孔,面孔率0.60%;(c)中佳4井,4 408.15 m,粒内溶孔,面孔率0.27%;(d)中佳4井,4 406.87 m,基质溶孔,面孔率0.38%"

图6

中佳地区佳木河组二段一砂组储层典型压汞曲线(a)排驱压力:0.47 MPa;最大连通孔喉半径:1.55 μm;饱和度中值压力:5.25 MPa;饱和度中值半径:0.14 μm;平均喉道半径:1.65 μm;孔喉半径均值:2.27 μm;平均毛管半径:3.92 μm;孔喉分选系数:4.47;均值系数:0.02;退汞效率:29.88%。(b)排驱压力:1.11 MPa;最大连通孔喉半径:0.66 μm;饱和度中值压力:8.00 MPa;饱和度中值半径:0.09 μm;平均喉道半径:1.68 μm;孔喉半径均值:1.93 μm;平均毛管半径:3.61 μm;孔喉分选系数:4.56;均值系数:0.02;退汞效率:31.40%。(c)排驱压力:0.54 MPa;最大连通孔喉半径:1.37 μm;饱和度中值压力:4.88 MPa;饱和度中值半径:0.15 μm;平均喉道半径:0.41 μm;孔喉半径均值:0.64 μm;平均毛管半径:1.04 μm;孔喉分选系数:1.07;均值系数:0.01;退汞效率:37.76%。(d)排驱压力:0.86 MPa;最大连通孔喉半径:0.86 μm;饱和度中值压力:6.09 MPa;饱和度中值半径:0.12 μm;平均喉道半径:0.27 μm;孔喉半径均值:0.43 μm;平均毛管半径:0.70 μm;孔喉分选系数:0.92;均值系数:0.00;退汞效率:39.60%"

图7

中佳地区佳木河组二段一砂组岩性—电性交会分析"

图8

中佳地区佳木河组电阻率—声波时差交会图"

表1

常用岩石物理横波预测模型统计"

预测方法适用岩性适用孔隙方法优选
CriticalPhi模型37中低
Greenberg-Castagna模型38中高
Krief模型39全(压实)中低
MudRock模型40泥质砂岩带粉砂颗粒中高
Unconsolidated模型41未固结砂岩
Xu-White模型42全(压实,深度>1 500 m)中低
Vernik模型43全(压实)中低

Self-consistent模型44

(Single Aspect Ratio)

全(孔隙和颗粒长宽比受岩性影响)中低
Soft-Prosity模型44致密储层、页岩气、碳酸盐岩

图9

中佳地区佳木河组二段一砂组纵横波速度比与纵波阻抗交会图"

图10

新光1井佳木河组二段一砂组横波预测成果"

表2

研究区目的层地质“甜点”判别参数"

分类地质标准弹性参数标准
储层GR≤70 APIVP/Vs<1.8
地质“甜点”RT≥35 Ω·m,Φ≥8.5%,Sg≥45%VP/Vs<1.65

图11

研究区储层脆性指数与人工裂缝形态分析"

图12

研究区目的层米采气能力与地质“甜点”参数交会图"

图13

研究区目的层米采气能力与弹性参数、脆性参数交会图"

图14

研究区目的层多参数聚类分析产能因素"

表3

中佳地区佳木河组二段一砂组储层综合评价分类"

类别Vp/VsBIФ/%综合计算归一化综合因子“甜点”分类取值
反演预测极值11.558015196.891
反演预测极值21.810719.360
Ⅰ类“甜点”参数≤1.65≥55≥11127.720.61≥0.6
Ⅱ类“甜点”参数≤1.6540~558.5~1187.490.38(0.4,0.6)
III类非储层<8.5≤0.4

图15

中佳地区佳木河组二段一砂组叠前反演平面属性"

图16

过ZJHW201井佳木河组二段一砂组叠前反演剖面"

图17

过ZJHW201井佳木河组二段一砂组多参数聚类叠前反演剖面"

1 邵曌一,吴朝东,张大智,等.松辽盆地徐家围子断陷沙河子组储层特征及控制因素[J].石油与天然气地质,2019,40(1):101-108.
SHAO Z Y, WU C D, ZHANG D Z, et al. Reservoir characteristics and controlling factors of Shahezi Formation in Xujiaweizi Fault Depression, Songliao Basin[J]. Oil & Gas Geology, 2019, 40(1): 101-108.
2 孙雨,于海涛,马世忠,等.致密砂岩储层物性特征及其控制因素——以松辽盆地大安地区白垩系泉头组四段为例[J].中国矿业大学学报,2017,46(4):809-819.
SUN Y, YU H T, MA S Z, et al. Physical property of tight sandstone reservoir and its controlling factors:A case study of the fourth member of Cretaceous Quantou Formation in Da’an area of Songliao Basin[J]. Journal of Central South University(Science and Technology), 2017, 46(4): 809-819.
3 CAI L X, XIAO G L, LU S F, et al. Spatial-temporal coupling between high-quality source rocks and reservoirs for tight sandstone oil and gas accumulations in the Songliao Basin, China[J]. International Journal of Mining Science and Technology, 2019, 29(3): 387-397.
4 李久娣.东海西湖N区块致密砂岩气藏“甜点”预测研究[J].石油物探,2019,58(3):444-452.
LI J D. “Sweet spot” prediction of a tight sandstone gas reservoir in the N Block in Xihu Sag, China[J]. Geophysical Prospecting for Petroleum,2019, 58(3): 444-452.
5 朱立文,王震亮,张洪辉,等.鄂尔多斯盆地乌审召地区山2 3亚段致密气“甜点”控因分析[J].天然气地球科学,2018,29(8):1085-1093.
ZHU L W, WANG Z L, ZHANG H H, et al. Analysis on the controlling factors of tight gas “sweet spot” of Shan2 3 sub-member in Wushenzhao area,Ordos Basin[J]. Natural Gas Geo-science, 2018, 29(8): 1085-1093.
6 ZHANG Y C, ZENG J H, QIAO J C, et al. Experimental study on natural gas migration and accumulation mechanism in sweet spots of tight sandstones[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 669-678.
7 崔明明,李进步,王宗秀,等.辫状河三角洲前缘致密砂岩储层特征及优质储层控制因素——以苏里格气田西南部石盒子组8段为例[J].石油学报,2019,40(3):279-294.
CUI M M, LI J B, WANG Z X, et al. Characteristics of tight sand reservoir and controlling factors of high-quality reservoir at braided delta front: A case study from member 8 of Shihezi Formation in southwestern Sulige Gas Field[J]. Acta Petrolei Sinica,2019,40(3):279-294.
8 黄彦庆,刘忠群,林恬,等.川东北元坝地区须家河组三段基于相控的相对优质储层预测[J].石油与天然气地质,2021,42(4):863-872.
HUANG Y Q, LIU Z Q, LIN T, et al. Lithofacies-based prediction of relatively high-quality reservoirs of the Xu3 Member in Yuanba area, northeastern Sichuan Basin[J]. Oil & Gas Geology,2021,42(4):863-872.
9 HUANG Y Q, WANG A, XIAO K H, et al. Types and genesis of sweet spots in the tight sandstone gas reservoirs: Insights from the Xujiahe Formation, northern Sichuan Basin, China[J]. Energy Geoscience, 2022, 3(3): 270-281.
10 邹娟,乐园,金涛,等.川中地区侏罗系致密砂岩储集层成因及“甜点”预测[J].新疆石油地质,2018,39(5):555-560.
ZOU J, LE Y, JIN T, et al. Genesis and sweet spot prediction of Jurassic tight sandstone reservoir in central Sichuan Basin[J]. Xinjiang Petroleum Geology, 2018, 39(5): 555-560.
11 李海晨,李占东,逯广东,等.重构反演在断陷盆地致密储层预测的应用——以海拉尔盆地贝中油田为例[J].地球物理学进展,2020,35(4):1391-1399.
LI H C, LI Z D, LU G D, et al. Application of reconstruction inversion in prediction of tight reservoir in faulted basin: Take Beizhong Oilfield in Hailar Basin as an example[J]. Progress in Geophysics, 2020, 35(4): 1391-1399.
12 李欢,王清斌,庞小军,等.致密砂砾岩储层裂缝形成及储层评价:以黄河口凹陷沙二段为例[J].地质科技情报,2019,38(1):176-185.
LI H, WANG Q B, PANG X J, et al. Fracture generation and reservoir evalution of tight glutenite reservoir: A case study of second member of Shahejie Formation in Huanghekou Depression[J]. Geological Science and Technology Information,2019,38(1):176-185.
13 LIU G P, ZENG L B, ZHU R K, et al. Effective fractures and their contribution to the reservoirs in deep tight sandstones in the Kuqa Depression, Tarim Basin, China[J]. Marine and Petroleum Geology,2021,124:104824.
14 郝爱胜,李剑,国建英,等.吐哈盆地下侏罗统致密砂岩气藏特征与勘探方向[J].天然气地球科学,2021,32(8):1212-1222.
HAO A S,LI J,GUO J Y,et al.Characteristics and exploration direction of tight sandstone gas reservoirs in the Lower Jurassic of Turpan-Hami Basin[J]. Natural Gas Geoscience,2021,32(8): 1212-1222.
15 周路,袁敬一,任东耀,等.吐哈盆地温吉桑区块三工河组致密砂岩“甜点”储层有利区分布预测[J].天然气地球科学,2015,26(6):1003-1015.
ZHOU L, YUAN J Y, REN D Y, et al. Forecast on the advantageous area distribution of tight sandstone sweet spots reservoir in Sangonghe Formation Wenjisang area of Turpan-Hami Basin[J]. Natural Gas Geoscience,2015,26(6):1003-1015.
16 何文军,杨海波,费李莹,等.准噶尔盆地新光地区佳木河组致密砂岩气有利区资源潜力综合分析[J].天然气地球科学,2018,29(3):370-381.
HE W J, YANG H B, FEI L Y, et al. Comprehensive analysis of tight sandstone gas resource potential in the favorable area of Jiamuhe Formation in Xinguang area, Junggar Basin[J]. Natural Gas Geoscience,2018,29(3):370-381.
17 王屿涛,吕纯刚,姚爱国,等.准噶尔盆地致密砂岩气资源潜力及勘探前景[J].天然气地球科学,2015,26(5):855-860.
WANG Y T, LÜ C G, YAO A G, et al. Tight sandstone gas resource potential and exploration prospect in the Junggar Basin[J]. Natural Gas Geoscience,2015,26(5):855-860.
18 BUSH B, BECKER I, KOEHRER B, et al. Porosity evolution of two Upper Carboniferous tight-gas-fluvial sandstone reservoirs: Impact of fractures and total cement volumes on reservoir quality[J].Marine and Petroleum Geology,2019,100:376-390.
19 GHANBARIAN B, TORRES-VERDIN C, LAKE L W, et al. Gas permeability in unconventional tight sandstones: Scaling up from pore to core[J]. Journal of Petroleum Science and Engineering, 2019, 173: 1163-1172.
20 KADKHODAIE-ILKHCHI R, KADKHODAIE A, REZAEE M R, et al. Unraveling the reservoir heterogeneity of the tight gas sandstones using the porosity conditioned facies modeling in the Whicher Range field, Perth Basin, western Australia[J]. Journal of Petroleum Science and Engineering, 2019, 176: 97-115.
21 孔玉华,鲍海娟,李振华,等.准噶尔盆地中拐凸起佳木河组层序地层模式[J].特种油气藏,2014,21(5):60-64.
KONG Y H, BAO H J, LI Z H, et al. Sequence stratigraphic mode of Jiamuhe Formation in Zhongguai Bulge, Junggar Basin[J]. Special Oil and Gas Reservoir, 2014, 21(5): 60-64.
22 杨川,吴涛,李啸,等.准噶尔盆地中拐凸起佳木河组储集层物性实测值校正[J].新疆石油地质,2021,42(6):749-755.
YANG C, WU T, LI X, et al. Correction of measured reservoir physical properties of Jiamuhe Formation in Zhongguai Uplift of Junggar Basin[J].Xinjiang Petroleum Geology,2021, 42(6): 749-755.
23 李振华,邱隆伟,师政,等.准噶尔盆地中拐地区佳二段沸石类矿物成岩作用及其对油气成藏的意义[J].中国石油大学学报(自然科学版),2014,38(1):1-7.
LI Z H, QIU L W, SHI Z, et al. Diagenesis of zeolite minerals and its significance for hydrocarbon accumulation in the second member of Jiamuhe Formation of Zhongguai area, Junggar Basin[J]. Journal of China University of Petroleum, 2014, 38(1): 1-7.
24 张金川,金之钧,庞雄奇.深盆气成藏条件及其内部特征[J].石油实验地质,2000,22(3):210-214.
ZHANG J C, JIN Z J, PANG X Q. Formation conditions and internal features of deep basin gas accumulations[J].Petroleum Geology & Experiment,2000, 22(3): 210-214.
25 杨晓萍,赵文智,邹才能,等.低渗透储层成因机理及优质储层形成与分布[J].石油学报,2007,38(4):57-61.
YANG X P, ZHAO W Z, ZOU C N, et al. Origin of low-permeability reservoir and distribution of favorable reservoir[J]. Acta Petrolei Sinica, 2007, 38(4): 57-61.
26 赵仲祥,董春梅,林承焰,等.西湖凹陷深层低渗—致密气藏“甜点”类型划分及成因探讨[J].石油与天然气地质,2018,39(4):778-790.
ZHAO Z X, DONG C M, LIN C Y, et al. Classification and origin of “sweet spots” in deep low permeability tight gas reservoirs,Xihu Sag,East China Sea Shelf Basin[J].Oil & Gas Geology,2018,39(4):778-790.
27 蔡勋育,邱桂强,孙冬,等.中国中西部大型盆地致密砂岩油气“甜点”类型与特征[J].石油与天然气地质,2020,41(4):684-695.
CAI X Y, QIU G Q, SUN D, et al. Types and characteristics of tight sandstone sweet spots in large basins of central-western China[J]. Oil & Gas Geology,2020,41(4):684-695.
28 LAW B E. Basin-centered gas systems[J]. AAPG Bulletin, 2002, 86(11): 1891-1919.
29 张金强,刘振峰,刘喜武,等.致密砂岩储层自适应岩石物理建模方法[J].石油地球物理勘探,2021,56(4):792-800,808.
ZHANG J Q, LIU Z F, LIU X W, et al. Self-adaptive rock physics modeling method for tight sandstone reservoirs[J]. Oil Geophysical Prospecting, 2021, 56(4): 792-800, 808.
30 丁文龙,尹帅,王兴华,等.致密砂岩气储层裂缝评价方法与表征[J].地学前缘,2015,22(4):173-187.
DING W L, YIN S, WANG X H, et al. Assessment method and characterization of tight sandstone gas reservoir fractures[J]. Earth Science Frontiers, 2015, 22(4): 173-187.
31 张林清,张会星,姜效典,等.弹性参数反演与属性融合技术在“甜点”预测中的应用[J].天然气地球科学,2017,28(4):582-589.
ZHANG L Q, ZHANG H X, JIANG X D, et al. Application of elastic parameters inversion and attribute fusion technology in the “sweet spot” prediction[J]. Natural Gas Geoscience, 2017, 28(4): 582-589.
32 郭春安,关平,师永民,等.基于测井曲线无量纲交会法的致密砂岩储层“甜点”识别及预测[J].北京大学学报(自然科学版),2020,56(2): 262-270.
GUO C A, GUAN P, SHI Y M, et al. Identification and prediction of “sweet spots” in tight sandstone reservoirs based on logging curve dimensionless rendezvous method[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(2): 262-270.
33 周林,刘皓天,周坤,等.致密砂岩储层“甜点”识别及评价方法[J].地质科技情报,2020,29(4):165-173.
ZHOU L,LIU H T,ZHOU K, et al. Sweet spot identification and evaluation of tight sandstone reservoir[J]. Geological Science and Technology Information, 2020, 29(4): 165-173.
34 陈彦虎,胡俊,蒋龙聪,等.利用常规测井曲线定量预测裂缝型孔隙度[J].特种油气藏,2017,24(6):7-11.
CHEN Y H, HU J, JIANG L C, et al. Quantitative prediction of fractured porosity by using conventional logging curves[J]. Special Oil and Gas Reservoir,2017,24(6):7-11.
35 贾凌云,李琳,王千遥,等.致密砂岩储层岩石物理模型的优化建立[J].地球科学进展,2018,33(4):416-424.
JIA L Y, LI L, WANG Q Y, et al. Optimization of the rock physical model in tight sandstone reservoir[J]. Advances in Earth Science,2018,33(4):416-424.
36 伍顺伟,高阳,胡俊,等.玛湖地区横波预测方法优选及其对岩石力学参数计算的影响[J].特种油气藏,2021,28(3):9-39.
WU S W, GAO Y, HU J, et al. Prediction method optimization for S-wave in Mahu area and its influence on calculation of rock mechanics parameters[J]. Special Oil and Gas Reservoir, 2021,28(3):9-39.
37 MARION D, NUR A, YIN H. Wave velocities in sediments[J]. MRS Online Proceedings Library,1990,195(1):459-469.
38 GREENBERG M L, CASTAGNA J P. Shear-wave velocity estimation in porous rocks: Theoretical formulation, preliminary verification and applications[J]. Geophysical Prospecting,1992,40(2):195-209.
39 KRIEF M, GARAT J,STELLINGWERFF J, et al. A petrophysical interpretation using the velocities of P and S waves (full-wave-form sonic)[J].The Log Analyst,1990,31(6):355-369.
40 GASSMANN F. Uber die Elastizitat poroser Medien[J]. Vier Der Natur Gesellschaft in Zurich,1951,96(4):1-23.
41 VERNIK L. Acoustic velocity and porosity systematics in siliciclastics[J]. The Log Analyst,1998,39(4):27-35.
42 XU S Y, WHITE R E. A physical model for shear-wave velo-city prediction[J].Geophysical Prospecting,1996,44(4):687-717.
43 HILL R. A self-consistent mechanics of composite materials[J]. Journal of Mechanical Physics of Solids,1965,13(4):213-222.
44 RUIZ F, CHENG A. A rock physics model for tight gas sand[J]. The Leading Edge,2010,29(12):1484-1489.
45 李灿,归平军.纵横波速度比在东胜气田致密低渗储层流体识别中的应用[J].物探与化探,2019,43(3):536-542.
LI C, GUI P J. VP/VS applied to fluid identification of tight sandstone reservoir of Dongsheng Gas Field[J]. Geophysical and Geochemical Exploration,2019,43(3):536-542.
46 曾治平,刘震,马骥,等.深层致密砂岩储层可压裂性评价新方法[J].地质力学学报,2019,25(2):223-232.
ZENG Z P, LIU Z, MA J, et al. A new method for fracrabit evaluation in deep and tight sandstone reservoirs[J]. Journal of Geomechanics,2019,25(2):223-232.
47 RICKMAN R, MULLEN M, PETRE E, et al. A Practical Use of Shale Petrophysics for Stimulation Cesign Optimization: All Shale Plays Are Not Clones of the Barnett Shale[C].SPE Annual Technical Conference and Exhibition. Colorado, USA: Society of Petroleum Engineers, 2008.
48 李传亮.油藏工程原理[M]. 第二版. 北京:石油工业出版社,2011:198-199,274-275.
LI C L.Principles of Reservoir Engineering[M].Second Edition.Beijing:Petroleum Industry Press,2011:198-199,274-275.
49 汪波.R气田复杂碳酸盐储层描述技术研究[D].成都:西南石油大学,2015:53-54.
WANG B. Research on Complex Carbonate Reservoir Description Technology in R Gas Field[D]. Chengdu: Southwest Petroleum University,2015:53-54.
[1] 孙靖, 尤新才, 张全, 薛晶晶, 常秋生. 准噶尔盆地玛湖地区深层致密砾岩储层发育特征及成因[J]. 天然气地球科学, 2023, 34(2): 240-252.
[2] 卞保力,赵龙,蒋文龙,彭妙,龚德瑜,王瑞菊,吴卫安. 准噶尔盆地东部白家海凸起天然气轻烃地球化学特征[J]. 天然气地球科学, 2023, 34(1): 83-95.
[3] 费李莹, 王仕莉, 苏昶, 刘钰, 江祖强, 杨梦云, 李勇广, 彭海军. 准噶尔盆地盆1井西凹陷东斜坡侏罗系三工河组油气成藏特征及控制因素[J]. 天然气地球科学, 2022, 33(5): 708-719.
[4] 曹正林, 李攀, 王瑞菊. 准噶尔盆地玛湖凹陷P—T转换期层序结构、坡折发育及油气地质意义[J]. 天然气地球科学, 2022, 33(5): 807-819.
[5] 孟颖, 靳军, 高崇龙, 李际, 刘明, 刘可, 王柯, 任影, 邓毅. 准噶尔盆地南缘西段白垩系深层储层特征及物性保存机制[J]. 天然气地球科学, 2022, 33(2): 218-232.
[6] 王剑, 陈俊, 陈锐兵, 刘向军, 刘金, 连丽霞, 马聪. 准噶尔盆地东部石炭系火山岩形成环境及其对储集性能影响机理[J]. 天然气地球科学, 2022, 33(11): 1785-1797.
[7] 刘兵兵, 马东正, 秦臻, 王天海, 刘军, 陶辉飞. 准噶尔盆地吉木萨尔南部中上二叠统沉积古环境分析[J]. 天然气地球科学, 2022, 33(10): 1571-1584.
[8] 李二庭, 米巨磊, 周波, 马聪, 陈世加, 张晓刚, 刘翠敏. 准噶尔盆地莫索湾地区白垩系生物降解与成藏地球化学特征[J]. 天然气地球科学, 2021, 32(9): 1384-1392.
[9] 刘刚, 李建忠, 齐雪峰, 朱明, 袁波, 庞志超. 准噶尔盆地南缘西段下部成藏组合油气藏形成过程[J]. 天然气地球科学, 2021, 32(7): 1009-1021.
[10] 邹妞妞, 张大权, 史基安, 鲁新川, 张顺存. 准噶尔盆地中拐凸起二叠系上乌尔禾组油气成藏及其主控因素[J]. 天然气地球科学, 2021, 32(4): 540-550.
[11] 钱海涛, 苏东旭, 阿布力米提·依明null, 王学勇, 李宗浩, 王国栋. 准噶尔盆地盆1井西凹陷斜坡区油气地质特征及勘探潜力[J]. 天然气地球科学, 2021, 32(4): 551-561.
[12] 张志杰, 成大伟, 周川闽, 余宽宏. 准噶尔盆地石树沟凹陷平地泉组细粒岩特征及其对准东北地区页岩油勘探的指示意义[J]. 天然气地球科学, 2021, 32(4): 562-576.
[13] 贾腾飞, 王猛, 高星月, 赵健光, 朱俊卿. 低阶煤储层孔隙结构特征及分形模型评价[J]. 天然气地球科学, 2021, 32(3): 423-436.
[14] 尤新才, 高岗, 吴俊, 赵建宇, 刘诗局, 段延娟. 准噶尔盆地玛南地区风城组烃源岩地球化学特征及有效性差异[J]. 天然气地球科学, 2021, 32(11): 1697-1708.
[15] 张兆辉, 杜社宽, 张顺存. 利用测井信息预测火成岩缝洞储集层压后产量[J]. 天然气地球科学, 2020, 31(8): 1185-1194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!