天然气地球科学 ›› 2022, Vol. 33 ›› Issue (11): 1836–1847.doi: 10.11764/j.issn.1672-1926.2022.07.009

• 天然气地球化学 • 上一篇    下一篇

塔里木盆地塔西南坳陷柯东构造带甫沙4井原油来源及充注过程

黄文宇1,2,3(),潘长春1,2(),于双1,2,张海祖4,肖中尧4,张仲达1,2,3   

  1. 1.中国科学院广州地球化学研究所有机地球化学国家重点实验室,广东 广州 510640
    2.中国科学院深地科学卓越创新中心,广东 广州 510640
    3.中国科学院大学,北京 100049
    4.中国石油天然气股份有限公司塔里木油田分公司,新疆 库尔勒 841000
  • 收稿日期:2022-05-25 修回日期:2022-07-14 出版日期:2022-11-10 发布日期:2022-11-23
  • 通讯作者: 潘长春 E-mail:215555150@qq.com;cpan@gig.ac.cn
  • 作者简介:黄文宇(1995-),男,广东湛江人,博士研究生,主要从事油气地球化学研究.E-mail: 215555150@qq.com.
  • 基金资助:
    中国科学院先导项目(XDA14010104);国家科技重大专项专题(2017ZX05008-002-030)

Oil source and charging process of Well FS4 in the Kedong structural belt, Southwest Tarim Depression, Tarim Basin

Wenyu HUANG1,2,3(),Changchun PAN1,2(),Shuang YU1,2,Haizu ZHANG4,Zhongyao XIAO4,Zhongda ZHANG1,2,3   

  1. 1.State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
    2.CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
    3.University of Chinese Academy of Sciences, Beijing 100049
    4.Research Institute of Petroleum Exploration and Development, Tarim Oilfield Company, PetroChina, Korla 841000, China
  • Received:2022-05-25 Revised:2022-07-14 Online:2022-11-10 Published:2022-11-23
  • Contact: Changchun PAN E-mail:215555150@qq.com;cpan@gig.ac.cn
  • Supported by:
    The Pilot Project of the Chinese Academy of Sciences(XDA14010104);the China National Science and Technology Major Projects(2017ZX05008-002-030)

摘要:

甫沙4井位于塔里木盆地塔西南坳陷昆仑山前冲断带的柯东构造带上,北部和东部分别发育有柯克亚和柯东1井油气田。为研究甫沙4井原油来源与充注过程,对原油样品和连续抽提后的含油砂样各组分(游离态、束缚态、包裹体)进行GC、GC?MS和 GC?IRMS分析,与柯克亚凝析油气田油样进行油—油对比。结果表明:甫沙4井晚期充注原油组分具有C29?32重排藿烷、重排甾烷和Ts相对含量高,C27?29甾烷ααα 20R分布呈反“L”型,以及正构烷烃单体碳同位素值较低等特征,与柯克亚凝析油气田来源于二叠系普司格组(P2?3p)烃源岩的主体原油(I类)地球化学特征一致。而早期充注的原油组分具有重排藿烷、重排甾烷和Ts相对含量较低,C27?29甾烷ααα 20R分布呈“V”型,以及正构烷烃单体碳同位素值较高等特征,与柯克亚凝析油气田来源于中—下侏罗统湖相泥岩的II类原油地球化学特征一致。甫沙4井经历3个阶段成藏过程:①在上新世,二叠系烃源岩于生油晚期阶段生成的I类原油运移至柯克亚构造带或柯东构造带深部形成油藏;②在更新世早期,侏罗系烃源岩于生油早—中期生成的II类原油运移至甫沙4井白垩系储层;③在第四纪,强烈的构造作用使深部I类原油沿断裂调整进入甫沙4井白垩系储层。最终造成甫沙4井白垩系储层II类原油先充注,I类原油后充注的特殊现象。

关键词: 塔西南坳陷, 甫沙4井, 连续抽提, 重排藿烷, 单体碳同位素, 充注过程

Abstract:

Well FS4 is located in Kedong structural belt while Kekeya and Kedong 1 condensate gas fields are located in the north and east of the well, respectively of the Kunlun mountain thrust belt in Southwest Depression of the Tarim Basin. In order to investigate oil sources and charging process for reservoirs within Well FS4, crude oils and oil components by sequential extraction (free oils, adsorbed oils and inclusion oils) from oil-containing sandstones were analyzed using GC, GC-MS and GC-IRMS. On the basis of biomarker compositions and carbon isotopes of individual n-alkanes for oils and sequential extracted components from oil-containing sandstones, in combination with oil-oil correlation results from Kekeya condensate field, two oil groups have been identified. Group I oils were characterized by high relative concentrations of C29-32 diahopanes, diasteranes and Ts, lower relative concentration of C27 ααα 20R regular steranes and lower δ13C values of individual n-alkanes, compared with group II oils. Group I oils were derived from lacustrine source rocks within the Middle-Upper Permian Pusige Formation while group II oils were derived from the lacustrine source rocks within the Lower-Middle Jurassic strata. Oil charging process for reservoirs within the Cretaceous strata in Well FS4 can be outlined as follows: (1) In the middle-Late Pliocene, oils that formed from the Permian source rocks at the late oil-generative stage charged the paleo-reservoirs in Kekeya or Kedong structural belt; (2) In the Early Pleistocene, oils that were generated from the Jurassic source rocks at the early to bulk oil-generative stage entered the Cretaceous reservoir in Well FS4; (3) In the Quaternary, strong tectonic movements caused the Permian oil from paleo-reservoirs to re-migrate and entere the Cretaceous reservoir in Well FS4.

Key words: Southwest Tarim Depression, Well FS4, Sequential extraction, Diahopanes, Compound specific carbon isotopes, Charging process

中图分类号: 

  • TE122.2

表1

样品基础信息"

样品

编号

层位

井深

/m

类型

样品

编号

层位井深/m类型
FS4R1K2k2 182砂岩FS4O1K2k2 394
FS4R2-1K2k2 235砂岩FS4O2K2k2 255~2 500
FS4R2-2K2k2 235砂岩K2ON1x3 247~3 298
FS4R3K2k2 236砂岩K9ON1x2 188~3 872
FS4R4K2k2 256砂岩KZ104OE2k6 336~6 360
FS4R5K2k2 269砂岩KS101O1K16 651~6 676
FS4R6K2k2 396砂岩KS101O2K16 807~6 835
FS4R7K2k2 411砂岩

图1

FS4井与柯克亚凝析油气田位置(据文献[4]修改)"

图2

塔西南坳陷昆仑山前冲断带剖面(据文献[16]修改)"

图3

柯克亚凝析油气田K9O和KS101O1原油样品色谱、m/z=191和m/z=217质量色谱在(b)、(e)中,C19-C26:三环萜烷;Te24:C24四环萜烷;C29-32D:C29-32重排藿烷;G:伽马蜡烷;在(c)、(f)中,C27DS:C27重排甾烷20S;C27DR:C27重排甾烷20R"

图4

原油和含油砂岩各组分甾烷、萜烷分子指标交会图"

表2

原油和游离态(a)、束缚态(b)、包裹体(c)组分分子指标"

样品编号1234567891011121314
K2O1.640.230.810.750.510.510.200.270.530.450.61II
K9O1.610.230.750.600.410.480.200.300.490.480.59II
KZ104O1.540.250.770.760.640.590.210.290.500.510.64II
KS101O11.750.150.400.080.290.310.250.270.470.400.47IIII
KS101O21.610.180.380.040.340.250.250.260.490.380.44IIII
FS4O11.850.090.710.360.390.430.150.270.580.500.58II
FS4O21.420.090.760.420.440.420.140.380.480.600.58II
FS4R1a1.570.120.710.420.430.460.200.250.540.530.59383.2II
FS4R1b1.160.150.690.330.380.450.270.270.460.510.5428.0II
FS4R1c1.130.160.490.060.310.200.350.240.410.310.4326.0IIII
FS4R2-1a1.140.110.690.390.470.470.220.250.530.500.602 404.0II
FS4R2-1b1.140.120.550.090.400.330.410.260.330.420.4716.6III
FS4R2-1c1.290.170.490.070.340.240.430.210.360.360.4616.7III、II
FS4R2-2a1.230.110.710.380.420.450.180.290.530.490.602 548.0II
FS4R2-2b1.230.120.650.150.460.400.380.250.360.410.4911.4I、III
FS4R2-2c1.080.160.520.080.280.210.360.250.390.400.4620.6II
FS4R3a1.410.130.550.240.350.430.310.260.440.490.5755.0I、III
FS4R3b0.710.130.520.040.380.280.430.280.290.430.4711.1III
FS4R3c1.400.150.500.060.240.190.350.240.410.370.4723.2II
FS4R4a1.390.090.720.410.440.500.180.290.530.510.604 477.0II
FS4R4b1.230.100.680.230.480.380.330.310.360.490.5214.8I、III
FS4R4c0.910.140.510.090.290.220.350.220.430.370.489.3III、II
FS4R5a1.460.100.710.390.420.490.190.290.520.510.612 025.3II
FS4R5b1.200.100.670.150.470.370.350.270.380.420.5013.3I、III
FS4R5c1.500.170.540.100.300.250.370.240.390.390.4615.4III、II
FS4R6a1.670.100.700.360.370.470.180.290.540.500.613 339.6II
FS4R6b1.470.150.620.100.400.260.350.270.380.430.4815.4I、III
FS4R6c0.830.140.480.080.370.240.350.250.400.410.4818.3IIII
FS4R7a1.300.080.680.360.470.470.150.290.570.480.61539.2II
FS4R7b1.130.130.600.130.430.420.380.290.330.420.4723.7I、III
FS4R7c0.890.160.510.080.370.280.420.200.380.380.4818.7II

图5

FS4井FS4O1和FS4O2原油样品色谱、m/z=191和m/z=217质量色谱"

图6

FS4R1含油砂岩样品原油色谱、m/z=191和m/z=217质量色谱"

图7

FS4R3含油砂岩样品原油色谱、m/z=191和m/z=217质量色谱"

图8

原油和含油砂岩各组分正构烷烃单体碳同位素组成"

1 吴鸿翔,邹乐君,张欲清,等.基于地震与非地震联合约束下复杂冲断带构造建模:以西昆仑山前柯东构造带为例[J].高校地质学报,2019,25(2):259-267.
WU H X, ZOU L J, ZHANG Y Q, et al. Structural modeling for complex thrust belts based on integrated seismic and non-seismic data: A case study of the Kedong structural belt in the piedmont of western Kunlun Mountains[J]. Geological Journal of China Universities,2019,25(2):259-267.
2 GONG D Y, WANG Z Y, LIU G, et al. Re-examination of the oil and gas origins in the Kekeya gas condensate field, Northwest China: A case study of hydrocarbon-source correlation using sophisticated geochemical methods[J]. Acta Geologica Sinica,2017,91(1):186-203.
3 DAI J X, GONG D Y, NI Y Y, et al. Stable carbon isotopes of coal-derived gases sourced from the Mesozoic coal measures in China[J]. Organic Geochemistry,2014,74:123-142.
4 杜金虎,王招明,雷刚林,等.柯东1风险探井的突破及其战略意义[J].中国石油勘探,2011,16(2):1-5,11,85.
DU J H, WANG Z M, LEI G L, et al. A discovery in Well Kedong-1 and its exploration significance[J]. China Petroleum Exploration,2011,16(2):1-5,11,85.
5 LI M W, LIN R Z, LIAO Y S, et al. Organic geochemistry of oils and condensates in the Kekeya Field, Southwest Depression of the Tarim Basin(China)[J]. Organic Geochemistry,1999,30(1):15-37.
6 肖中尧,唐友军,侯读杰,等.柯克亚凝析油气藏的油源研究[J].沉积学报,2002,18(4):716-720.
XIAO Z Y, TANG Y J, HOU D J, et al. Study on oil source of Kekeya condensate oil-gas pool[J]. Acta Sedimentologica Sinica,2002,18(4):716-720.
7 侯读杰,肖中尧,唐友军,等.柯克亚油气田混合来源天然气的地球化学特征[J].天然气地球科学, 2003,14(6):474-479.
HOU D J, XIAO Z Y, TANG Y J, et al. Geochemical characterization of mixing natural gas in Kekeya Field, Tarim Basin, China[J]. Natural Gas Geoscience,2003,14(6):474-479.
8 侯读杰,赵增迎,唐友军,等.柯克亚地区原油裂解气的地质—地球化学特征[J].天然气地球科学, 2004,15(2):137-141,200.
HOU D J, ZHAO Z Y, TANG Y J, et al. Geochemical characterization of mixing natural gas in Kekeya Field, Tarim Basin, China[J]. Natural Gas Geoscience,2004,15(2):137-141,200.
9 WU X Q, TAO X W, HU G Y. Geochemical characteristics and source of natural gases from Southwest Depression of the Tarim Basin, NW China[J].Organic Geochemistry,2014,74:106-115.
10 王强,彭平安,曾建,等.叶城凹陷柯东1井凝析油及柯克亚原油的油源分析[J].地球化学,2014,43(5):469-476.
WANG Q, PENG P A, ZENG J, et al. Oil source of condensates from Well Kedong 1 and crude oil from Kekeya in Yecheng Depression[J]. Geochimica,2014,43(5):469-476.
11 杜治利,曾昌民,邱海峻,等.塔西南叶城凹陷二叠系两套烃源岩特征及柯东1井油源分析[J].吉林大学学报(地球科学版),2016,46(3):651-660.
DU Z L, ZENG C M, QIU H J, et al. Key formations of the Permian hydrocarbon source rocks and oil-source correlation of Well KD1 in Yecheng Depression of southwestern Tarim Basin[J]. Journal of Jilin University(Earth Science Edition),2016,46(3):651-660.
12 HUANG W Y, YU S, ZHANG H Z, et al. Diamondoid fractionation and implications for the Kekeya condensate field in the southwestern Depression of the Tarim Basin, NW China[J].Marine and Petroleum Geology,2022,138:105551.
13 PAN C C, YANG J Q. Geochemical characteristics and implications of hydrocarbons in reservoir rocks of Junggar Basin, China[J]. Chemical Geology,2000,167(3-4):321-335.
14 YU S, PAN C C, WANG J J, et al. Molecular correlation of crude oils and oil components from reservoir rocks in the Tazhong and Tabei uplifts of the Tarim Basin, China[J]. Organic Geochemistry,2011,42(10):1241-1262.
15 王国彬,王熠,李二庭,等.准噶尔盆地玛湖凹陷西斜坡百口泉组含油储集岩分子与碳同位素地球化学特征及其意义[J].地球化学,2017,46(3):276-291.
WANG G B,WANG Y,LI E T,et al. Molecular and carbon iso-topic compositions of oil components in the Baikouquan Formation oil-bearing reservoir rocks on the western slope of the Mahu Sag, Junggar Basin[J]. Geochimica,2017,46(3):276-291.
16 程晓敢,黄智斌,陈汉林,等.西昆仑山前冲断带断裂特征及构造单元划分[J].岩石学报,2012, 28(8):2591-2601.
CHENG X G, HUANG Z B, CHEN H L, et al. Fault characteristics and division of tectonic units of the thrust belt in the front of the West Kunlun Mountains[J]. Acta Petrologica Sinica,2012,28(8):2591-2601.
17 MOLDOWAN J M, FAGO F J, CARLSON R M K, et al. Rearranged hopanes in sediments and petroleum[J]. Geochimica et Cosmochimica Acta,1991,55(11):3333-3353.
18 FARRIMOND P, TELNAES N. Three series of rearranged hopanes in Toarcian sediments (northern Italy)[J]. Organic Geochemistry,1996,25(3-4):165-177.
19 曾昌民,张亮,雷刚林,等.塔西南坳陷烃源岩生标特征对比及沉积环境指示意义[J].新疆地质, 2011,29(3):319-323.
ZENG C M, ZHANG L, LEI G L, et al. Biomarkers characteristics of source rocks of south-west Tarim Depression and its signification for sedimentary environment[J]. Xinjiang Geology,2011,29(3): 319-323.
20 何登发,陈红英,柳少波,等.柯克亚凝析油气田的成藏机理[J].石油勘探与开发,1997,24(4):28-32,99.
HE D F, CHEN H Y, LIU S B, et al. Pool-forming mechinism of Kekeya condensate oil and gas field[J]. Petroleum Exploration and Development,1997,24(4):28-32,99.
21 莫午零,林潼,张英,等.西昆仑山前柯东—柯克亚构造带油气来源及成藏模式[J].石油实验地质,2013,35(4):364-371.
WU M L, LIN T, ZHANG Y, et al. Hydrocarbon origin and accumulation model of Kedong-Kekeya tectonic belt in piedmont of West Kunlun Mountain[J]. Petroleum Geology & Experiment,2013,35(4):364-371.
22 YU S, PAN C C, WANG J J, et al. Correlation of crude oils and oil components from reservoirs and source rocks using carbon isotopic compositions of individual n-alkanes in the Tazhong and Tabei Uplift of the Tarim Basin, China[J]. Organic Geochemistry,2012,52:67-80.
23 LI S M, AMRANI A, PANG X Q, et al. Origin and quantitative source assessment of deep oils in the Tazhong Uplift, Tarim Basin[J].Organic Geochemistry,2015,78:1-22.
24 张敏,黄光辉,赵红静,等.塔里木盆地柯克亚地区凝析油气藏成因特征研究[J].中国科学(D辑:地球科学),2008,38(S2):17-23.
ZHANG M, HUANG G H, ZHAO H J, et al. Study on the genesis characteristics of condensate reservoirs in the Kekeya area of Tarim Basin[J]. Scientia Sinica(Terrae),2008,38(S2):17-23.
25 何登发,李德生,何金有,等.塔里木盆地库车坳陷和西南坳陷油气地质特征类比及勘探启示[J]. 石油学报,2013,34(2):201-218.
HE D F, LI D S, HE J Y, et al. Comparison in petroleum geology between Kuqa Depression and Southwest Depression in Tarim Basin and its exploration significance[J]. Acta Petrolei Sinica,2013, 34(2):201-218.
26 曾昌民,杜治利,周学慧,等.昆仑山前柯东构造带构造解析及形成机制[J].新疆石油地质,2011, 32(2):133-136.
ZENG C M, DU Z L, ZHOU X H, et al. Structural characteristics and deformation mechanism of Kedong thrust belt in piedmont of Kunlun Mountain[J]. Xinjiang Petroleum Geology,2011,32(2):133-136.
[1] 崔海峰, 田雷, 张年春, 刘军, 张继娟. 塔西南坳陷寒武系玉尔吐斯组烃源岩分布特征[J]. 天然气地球科学, 2016, 27(4): 577-583.
[2] 吴海, 赵孟军, 白东来, 周延钊, 周彦臣. 库车前陆盆地吐北2构造油气充注过程分析[J]. 天然气地球科学, 2016, 27(4): 600-608.
[3] 侯读杰,肖中尧,唐友军,朱俊章,李贤庆. 柯克亚油气田混合来源天然气的地球化学特征[J]. 天然气地球科学, 2003, 14(6): 474-479.
[4] 黄海平; 卢松年; 袁佩兰; . 古代沉积物中新检出的重排藿烷及其在油气勘探上的意义[J]. 天然气地球科学, 1994, 5(3): 23-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!