天然气地球科学 ›› 2022, Vol. 33 ›› Issue (9): 1485–1498.doi: 10.11764/j.issn.1672-1926.2022.06.009

• 天然气地球化学 • 上一篇    下一篇

鄂尔多斯盆地东部石炭系本溪组泥页岩地球化学特征及沉积环境

张力文1(),吴陈君1(),黄道军2,文志刚1,赵伟波2,席颖洋1,张辉2,孙璐1,宋换新1   

  1. 1.油气地球化学与环境湖北省重点实验室,长江大学资源与环境学院,湖北 武汉 430100
    2.中国石油长庆油田分公司勘探开发研究院,陕西 西安 710018
  • 收稿日期:2022-05-12 修回日期:2022-06-16 出版日期:2022-09-10 发布日期:2022-09-09
  • 通讯作者: 吴陈君 E-mail:894155316@qq.com;wcj627@163.com
  • 作者简介:张力文(1996-),女,陕西西安人,硕士研究生,主要从事地球化学研究. E-mail:894155316@qq.com.
  • 基金资助:
    中国石油长庆油田分公司科研项目“鄂尔多斯盆地中东部本溪组泥页岩地质特征及有利目标评价”(技2020-151)

Geochemical characteristics and sedimentary environment of Carboniferous Benxi Formation in eastern Ordos Basin

Liwen ZHANG1(),Chenjun WU1(),Daojun HUANG2,Zhigang WEN1,Weibo ZHAO2,Yingyang XI1,Hui ZHANG2,Lu SUN1,Huanxin SONG1   

  1. 1.Hubei Key Laboratory of Petroleum Geochemistry and Environment(Yangtze University),Wuhan 430100,China
    2.China Research Institute of Exploration and Development,PetroChina Changqing Oilfield Company,Xi’an 710018,China
  • Received:2022-05-12 Revised:2022-06-16 Online:2022-09-10 Published:2022-09-09
  • Contact: Chenjun WU E-mail:894155316@qq.com;wcj627@163.com
  • Supported by:
    The Scientific Research Project of Changqing Oilfield Company, PetroChina(Technology 2020-151)

摘要:

鄂尔多斯盆地非常规油气资源丰富,盆地东部石炭系本溪组具有良好的非常规天然气勘探潜力。沉积环境是控制天然气资源分布的重要因素,因此以鄂尔多斯盆地东部石炭系本溪组重点全井段连续岩心为基础,通过对泥页岩地层矿物组成及元素地球化学特征的研究,揭示研究区本溪组泥页岩地层古沉积水体环境特征,探讨沉积相类型对泥页岩发育的控制作用。结果表明:本溪组古沉积水体盐度自下而上先减小后增大,为咸水—半咸水沉积环境;本溪组氧化—还原敏感参数自下而上呈现先增加后降低的趋势,整体反映出本溪组为缺氧—还原环境;古水深(Rb/Zr)研究表明,本溪组古水深自下而上由较小变大再逐渐变小,呈周期性变化;CaO/(Al2O3+MgO)、CIA等古气候指标反映了本溪组自下而上温度逐渐降低,风化程度逐渐减小,其中湖田段、畔沟段、晋祠段均为炎热潮湿气候。通过对比鄂尔多斯盆地东部本溪组泥页岩矿物组成、岩性组合、地球化学特征,认为本溪组泥页岩主要沉积类型为潮间带—潟湖沉积,且泥坪—潟湖混合沉积为本溪组富有机质泥页岩发育的有利沉积环境,并在此基础上对本溪组全段地层沉积模式进行综合分析,认为湖田段为风化淤化体系下的沼泽沉积,而畔沟段、晋祠段均为障壁海岸沉积体系,沉积环境分别为潮坪—潟湖—障壁岛混合沉积与潮坪—潟湖—障壁岛—沼泽混合沉积。

关键词: 元素地球化学, 泥页岩, 本溪组, 沉积环境, 鄂尔多斯盆地

Abstract:

Benxi Formation of Carboniferous in the Ordos Basin has unconventional energy sources, and its sedimentary environment is complex and interactive. Therefore, through the analysis and testing of core samples of typical wells in eastern Ordos Basin, based on the observation of core samples,this study reveals the paleoclimate and the palaleobathymetry environment of shale in Benxi Formation, and discusses the control of sedimentary facies characteristics on the shale development. The results show that the salinity of the palaeobathymetry of Benxi Formation gradually decreases from smaller to bigger, and the salinity of the coal seam water at the top of Hutian Member to Jinci Member gradually changes from saline water to saline water reclamation; redox sensitive parameters(Th/U)of Benxi Formation decrease first and then increase from lower to upper. Hutian Member, Pangou Member and Jinci Member are anoxic environment, oxygen poor anoxic environment and weak redox environment, respectively. The study of ancient water depth(Rb/Zr)shows that the ancient water depth of Benxi Formation changes periodically from lower to upper, and then gradually back to lower again; CaO/(Al2O3+MgO), CIA and other paleoclimate indicators reflect that Benxi Formation has a hot and humid climate. We compared the mineral composition and lithologic combination characteristics of the mud shale under different sedimentary backgrounds of Benxi Formation in eastern Ordos Basin, and further divided the facies into swamp deposit, lagoon-tidal-flat-barrier island mixed sediments, and lagoon-tidal-flat-barrier island-swamp mixed sediments were developed in Hutian Member, Pangou Member and Jinci Member respectively.

Key words: Element geochemical, Shale, Benxi Formation, Sedimentary environment, Ordos Basin

中图分类号: 

  • TE122.1+13

图1

研究区位置(a)与鄂尔多斯盆地本溪组层序地层综合柱状图(b)"

表1

Q36井本溪组元素含量分析测试结果"

编号层位样品岩性

TOC

/%

主量元素含量/%微量元素含量/10-6Sr/BaTh/URb/ZrCIA

CaO/(Al2O3

+MgO)

深度/mSiO2Al2O3K2OCaOMgOSrBaThURbZr
Q-16晋祠段2 801.43泥岩2.9156.4322.391.340.120.34170.56139.9818.52.9452.33119.471.226.30.4380.920.005
Q-152 805.6892.61.212.890.151.350.0464.9319.322.750.350.1723.933.367.820.0070.810.461
Q-142 810.0992.83.315.030.170.520.0547.9312.136.471.280.3375.143.955.050.0040.870.103
Q-132 813.37泥岩22.724.7222.20.440.070.1476.2791.921.6469.2811.63338.780.830.310.0340.960.003
Q-122 815.70泥岩7.2939.7824.550.880.780.28229.12163.7131.4371.8739.09327.351.40.440.1190.940.031
Q-112 819.10泥岩0.256.7622.712.520.090.5193.72183.7626.857.97140.93171.530.513.370.8220.880.004
Q-102 821.81泥岩1.9340.5824.231.570.10.37103.14196.6919.726.6776.4685.540.522.960.8940.920.004
Q-92 824.39泥岩8.532.1623.560.820.350.24145.88117.9819.4625.0435.1468.341.240.780.5140.940.015
Q-8畔沟段2 826.36泥岩0.3559.624.721.610.530.48103.77182.6619.742.9571.64107.270.576.680.6680.910.021
Q-72 829.24泥岩0.3460.9124.481.550.380.42143.36174.4319.342.7568.76126.550.827.030.5430.910.015
Q-62 831.62泥岩1.7951.120.781.330.50.591.48162.7212.762.3256.2595.380.565.490.590.910.023
Q-52 834.25泥岩5.1644.4835.551.910.150.6178.98238.6824.288.585.74147.580.752.850.5810.930.004
Q-4湖田段2 835.40泥岩0.440.7933.910.330.160.14402.9458.3646.0612.792.39334.926.93.60.0070.980.005
Q-32 836.70泥岩0.3244.8237.290.410.070.2162.4541.0161.5717.596.07405.593.963.50.0150.980.002
Q-22 838.16泥岩0.5741.0434.231.250.210.45165.7873.8661.7813.5928.6324.032.244.550.0880.950.006
Q-12 840.81泥岩0.2847.9829.634.860.582.86283.72271.96138.6752.04119.58553.891.042.660.2160.830.018

图2

鄂尔多斯盆地东部本溪组典型页岩相岩心及薄片照片(a)、(b) Q36井,湖田段,2 834.25 m,灰黑色页岩,偶见条带状有机质,砂质多呈斑块状富集;(c)、(d) Q36井,畔沟段2 824.0 m,黑色页岩,矿物呈纹层状分布,块状黄铁矿发育较好,有机质成斑块状;(e)、(f) Q36井,畔沟段,2 822.02 m,黑色炭质泥岩,条带状有机质较为发育,斑点状黄铁矿发育程度较高;(g)、(h) Q36井,晋祠段,2 815.7 m,黑色页岩,矿物呈纹层状分布,块状黄铁矿发育较好,有机质成斑块状"

图3

Q36井泥页岩元素地球化学参数垂向分布特征"

图4

本溪组泥页岩古水体盐度判识"

图5

本溪组泥页岩古氧化还原性判识"

图6

岩性组合、矿物含量及沉积相连井图"

图7

重点剖面石英含量(a)及黏土含量(b)对比"

表2

重点井及剖面地球化学参数与矿物含量"

剖面/井地层石英含量/%黏土总量/%Sr/BaTh/URb/Zr
Q36井晋祠段6.9~4727.6(8)43.1~87.558.1(8)0.51~1.240.95(6)0.31~6.32.36(6)0.03~0.890.47(6)
畔沟段1.2~5231.8(4)47~97.365.4(4)0.56~0.820.68(4)2.85~7.035.51(4)0.54~0.670.6(4)
湖田段00(4)87.9~99.293.2(4)1.04~6.93.54(4)2.66~3.63.58(4)0.01~0.220.08(4)
M115井晋祠段8~5730.6(11)32.3~88.559.9(11)0.64~2.51.68(5)1.98~4.973.43(5)0.16~0.960.59(5)
畔沟段8.6~37.124.9(7)61.8~90.772.2(7)1.13~2.211.59(6)1.55~3.312.57(6)0.34~0.820.46(6)
湖田段2.3~48.612.8(7)44.1~9679.1(7)1.17~2.871.71(7)1.69~4.432.86(7)0.1~0.820.3(7)
招贤剖面晋祠段32~69.554.3(12)29~56.941.5(12)0.09~1.610.97(12)3.21~6.784.54(12)0.37~1.010.58(12)
畔沟段66.166.1(1)31.431.4(1)0.750.75(1)1.151.15(1)0.070.07(1)
湖田段1.4~6.94.2(2)31.6~97.815.3(2)2.18~5.153.66(2)2.47~3.022.75(2)0.06~0.160.11(2)

图8

本溪组泥页岩沉积相与TOC分布直方图"

图9

鄂尔多斯盆地本溪组沉积模式(a)湖田段沉积期; (b)畔沟段沉积期; (c)晋祠段沉积期(据刘灿[2]、于兴河等[8]修改)"

1 邹才能, 赵群, 董大忠, 等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781-1796.
ZOU C N, ZHAO Q, DONG D Z, et al. Geological characteristics, main challenges and future prospect of shale gas[J].Natural Gas Geoscience, 2017, 28 (12): 1781-1796.
2 刘灿. 山西兴县石炭系本溪组煤岩特征及成煤环境[D]. 成都: 成都理工大学, 2020: 64-66.
LIU C. Study on the Coals Characteristics and Coal-forming Environment of Benxi Formation Coals in Carboniferous from Xingxian in Shanxi Province[D]. Chengdu: Chengdu University of Technology, 2020: 64-66.
3 郭小军. 鄂尔多斯盆地石炭—二叠纪聚煤规律与煤层气勘探有利区优选[D]. 北京: 中国石油大学(北京), 2010: 71-93.
GUO X J. Coal Accumulation and Target Optimization for Exploration of CBM in Permo-Carboniferous, Ordos Basin[D]. Beijing: China University of Petroleum(Beijing),2010:71-93.
4 周伟. 鄂尔多斯盆地东缘北部含煤岩系沉积相与聚煤规律[D]. 北京: 中国地质大学(北京), 2012: 37-40.
ZHOU W. Sedimentary Facies of the Coal Measures in Northeastern Margin of Ordos Basin and Coal Accumulation Mechanism[D].Beijing:China University of Geosciences(Beijing),2012: 37-40.
5 郭德运. 鄂尔多斯盆地东部上古生界沉积体系研究[D]. 西安: 西北大学, 2009: 37-79.
GUO D Y. The Study of Sedimentary System of Upper Paleozoic in East Ordos Basin[D]. Xi’an: Northwest University, 2009: 37-79.
6 周进松, 赵谦平, 银晓, 等. 鄂尔多斯盆地东南部石炭系本溪组储层沉积特征及天然气勘探方向[J]. 天然气勘探与开发, 2012, 35(2): 13-16.
ZHOU J S, ZHAO Q P, YIN X, et al. Sedimentary characteristics of Carboniferous Benxi Formation southeastern Ordos Basin[J]. Natural Gas Exploration and Development, 2012, 35(2): 13-16.
7 李云, 张建伍, 李晶, 等. 鄂尔多斯盆地东南部石炭系本溪组沉积微相特征及其对天然气富集控制作用[J]. 西北地质, 2014, 47(2): 216-222.
LI Y, ZHANG J W, LI J, et al. A study on sedimentary microfacies of Benxi Formation and its controlling effect on gas enrichment in Yangchang district of Ordos Basin[J]. Northwe-stern Geology, 2014, 47(2): 216-222.
8 于兴河, 王香增, 王念喜, 等. 鄂尔多斯盆地东南部上古生界层序地层格架及含气砂体沉积演化特征[J]. 古地理学报, 2017, 19(6): 935-954.
YU X H, WANG X Z, WANG N X, et al. Sequence stratigraphic framework and sedimentary evolution characteristics of gas-bearing sandbody in the Upper Paleozoic in southeastern Ordos Basin[J].Journal of Palaeogeography(Chinese Edition), 2017, 19(6): 935-945.
9 林进, 李云, 何剑. 鄂尔多斯延长探区本溪组物源及沉积体系分析[J]. 中国地质, 2013, 40(5): 1542-1551.
LIN J, LI Y, HE J. An analysis of the source and the sedimentary system of the Carboniferous Benxi Formation in Yanchang area of Ordos Basin[J]. Geology in China,2013,40(5): 1542-1551.
10 贾浪波, 钟大康, 孙海涛, 等. 鄂尔多斯盆地本溪组沉积物物源探讨及其构造意义[J]. 沉积学报, 2019, 37(5): 1087-1103.
JIA L B, ZHONG D K, SUN H T, et al. Sedimentary provenance analysis and tectonic implication of the Benxi Formation, Ordos Basin[J]. Acta Sedimentologica Sinica, 2019, 37(5): 1087-1103.
11 郑葆英,杨铁汾,刘联群, 等. 鄂尔多斯盆地中部石炭系层序地层分析[J]. 地球科学与环境学报, 2000, 22(1): 35-37.
ZHENG B Y, YANG T F, LIU L Q, et al. Sequence stratigraphy of Carboniferous in the central area of Ordos Basin[J]. Journal of Earth Sciences and Environment, 2000, 22(1): 35-37.
12 吴鹏. 鄂尔多斯盆地东南部上古生界煤系地层层序地层学研究[D]. 北京: 中国地质大学(北京), 2013: 37-50.
WU P. Study on Sequence Stratigraphy of Upper Paleozoic Coal-bearing Formation in the Southeastern Part of Ordos Basin[D]. Beijing: China University of Geosciences(Beijing), 2013: 37-50.
13 董江浪. 鄂尔多斯盆地东缘佳县—吴堡深部煤系层序地层分析及聚煤规律研究[D]. 西安: 西安科技大学, 2020: 29-36.
DONG J L. Sequence Stratigraphic Analysis of Jiaxian-Wubu Deep Coal-Bearing Strata and Coal Accumulation Law in the Eastern Margin of Ordos Basin[D]. Xi’an: Xi’an University of Science and Technology, 2020: 29-36.
14 刘新昕. 鄂尔多斯盆地东部石炭系本溪组沉积环境研究[D]. 成都: 成都理工大学, 2019: 8-37.
LIU X X. Study on the Sedimentary Environment of Upper Carboniferous Benxi Formation of Eastern Ordos Basin[D]. Chengdu: Chengdu University of Technology, 2019: 8-37.
15 侯云东, 陈安清, 赵伟波, 等. 鄂尔多斯盆地本溪组潮汐—三角洲复合砂体沉积环境[J]. 成都理工大学学报(自然科学版), 2018, 45(4): 393-401.
HOU Y D, CHEN A Q, ZHAO W B, et al. Analysis on the depositional environment of Carboniferous Benxi Formation tidal-delta sand body complex, Ordos Basin,China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2018, 45(4): 393-401.
16 陈全红, 李克永, 张道锋, 等. 鄂尔多斯盆地本溪组—太原组扇三角洲沉积与油气聚集的关系[J]. 中国地质, 2010, 37(2): 421-429.
CHEN Q H, LI K Y, ZHANG D F, et al. The relationship between fan delta and hydrocarbon accumulation in Benxi-Taiyuan Formation, Ordos Basin[J]. Geology in China,2010,37(2):421-429.
17 郭英海, 刘焕杰, 权彪, 等. 鄂尔多斯地区晚古生代沉积体系及古地理演化[J].沉积学报, 1998, 16(3): 44-51.
GUO Y H, LIU H J, QUAN B, et al. Late Paleozoic sedimentary system and paleogeographic evolution of Ordos Area[J]. Acta Sedimentologica Sinica, 1998, 16(3): 44-51.
18 刘春雷. 鄂尔多斯盆地东部本溪组沉积体系研究[D]. 西安: 西北大学, 2012: 58-68.
LIU C L. Sedimentary System Research of Benxi Formation in East Ordos Basin[D]. Xi'an: Northwest University, 2012: 58-68.
19 苏东旭, 于兴河, 李胜利, 等. 鄂尔多斯盆地东南部本溪组障壁海岸沉积特征与展布规律[J]. 天然气工业, 2017, 37(9): 48-56.
SU D X, YU X H, LI S L, et al. Sedimentary characteristics and distribution laws of Benxi Fm barrier coast in SE Ordos Basin[J]. Natural Gas Industry, 2017, 37(9): 48-56.
20 李文厚, 张倩, 李克永, 等. 鄂尔多斯盆地及周缘地区晚古生代沉积演化[J]. 古地理学报, 2021, 23(1): 39-52.
LI W H, ZHANG Q, LI K Y, et al. Sedimentary evolution of the Late Paleozoic in Ordos Basin and its adjacent area[J]. Journal of Palaeogeography, 2021, 23(1): 39-52.
21 冯娟萍, 欧阳征健, 陈全红, 等. 鄂尔多斯盆地及周缘地区上石炭统沉积特征[J]. 古地理学报, 2021, 23(1): 53-64.
FENG J P, OUYANG Z J, CHEN Q H, et al. Sedimentary characteristics of the Upper Carboniferous in Ordos Basin and its adjacent areas[J].Journal of Palaeogeography,2021,23(1): 53-64.
22 冯子齐. 鄂尔多斯盆地东南部山西组海陆过渡相页岩储层特征与评价[D]. 北京: 中国地质大学(北京), 2014: 10-18.
FENG Z Q. Characteristics and Evaluation of the Organic-rich Shale of Shanxi Formation, Southeast in Ordos Basin[D]. Beijing: China University of Geosciences(Beijing),2014:10-18.
23 郭艳琴, 李文厚, 郭彬程, 等. 鄂尔多斯盆地沉积体系与古地理演化[J]. 古地理学报, 2019, 21(2): 293-320.
GUO Y Q, LI W H. GUO B C, et al. Sedimentary system and palaeogeography evolution of Ordos Basin[J]. Journal of Palaeogeography, 2019, 21(2): 293-320.
24 苏东旭. 鄂尔多斯盆地东南部石炭系本溪组沉积体系研究[D]. 北京: 中国地质大学(北京), 2015: 21-34.
SU D X. Study on Sedimentary System of the Benxi Formation in the Southeastern Ordos Basin[D]. Beijing: China University of Geosciences(Beijing), 2015: 21-34.
25 刘桂珍, 高伟, 尉加盛, 等. 混积层系沉积、层序特征——以鄂尔多斯盆地高桥地区本溪组为例[J]. 天然气地球科学, 2021, 32(3): 382-392.
LIU G Z, GAO W, WEI J S, et al. Sedimentary characteristics and sequence stratigraphy in amixed silicilastic-carbonate depositional system: Case study of Benxi Formation in Gaoqiao area, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(3): 382-392.
26 田景春,张翔. 沉积地球化学: 卷一[M]. 北京: 地质出版社, 2016: 56-83.
TIAN J C, ZHANG X. Sedimentary Geochemistry:Volume 1[M]. Beijing: Geological Publishing House, 2016: 56-83.
27 COUCH E L. Calculation of paleosalinities from boron and clay mineral data[J]. AAPG Bulletin, 1971, 55(10): 1829-1837.
28 师晶, 黄文辉, 吕晨航, 等. 鄂尔多斯盆地临兴地区上古生界泥岩地球化学特征及地质意义[J]. 石油学报, 2018, 39(8): 876-889.
SHI J, HUANG W H, LÜ C H, et al. Geochemical characteristics and geological significance of the Upper Paleozoic mudstones from Linxing area in Ordos Basin[J]. Acta Petrolei Sinica, 2018, 39(8): 876-889.
29 邓宏文, 钱凯. 试论湖相泥质岩的地球化学二分性[J]. 石油与天然气地质, 1993, 14(2): 85-97.
DENG H W, QIAN K. Geochemical binary division character of lacustrine argillite[J]. Oil & Gas Geology,1993,14(2):85-97.
30 孙彩蓉. 鄂尔多斯盆地东缘石炭—二叠系页岩沉积相及微量元素地球化学研究[D]. 北京: 中国地质大学(北京), 2017: 33-35.
SUN C R. Study on Sedimentary Facies and Geochemistry of Trace Elements of Carboniferous-Permian Shale in the Eastern Ordos Basin[D].Beijing: China University of Geosciences(Bei-jing), 2017: 33-35.
31 ZHANG L F, DONG D Z, QIU Z, et al. Sedimentology and geochemistry of Carboniferous-Permian marine-continental transitional shales in the eastern Ordos Basin, North China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 571: 110389.
32 腾格尔. 海相地层元素、碳氧同位素分布与沉积环境和烃源岩发育关系——以鄂尔多斯盆地为例[D]. 兰州: 中国科学院研究生院/中国科学院兰州地质研究所,2004:42-98.
TENGER. The Distribution of Elements, Carbon and Oxygen Isotopes on Marine Strata and Environmental Correlation between they and Hydrocarbon Source Rocks Formation:An Example from Ordovician Basin, China[D]. Lanzhou: Graduate University of Chinese Academy of Sciences/Lanzhou Institute of Geology, Chinese Academy of Sciences, 2004: 42-98.
33 GUO Q, SHIELD G A, LIU C, et al. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the Early Cambrian[J]. Palaeogeography,Palaeoclimatology, Palaeoecology,2007,254(12):194-216.
34 陈晶, 黄文辉, 何明倩. 鄂尔多斯盆地东南部本溪组—下石盒子组泥岩元素地球化学特征[J]. 现代地质, 2018, 32(2): 240-250.
CHEN J, HUANG W H, HE M Q. Elemental geochemistry characteristics of mudstones from Benxi Formation to Lower Shihezi Formation in southeastern Ordos Basin[J]. Geoscience, 2018, 32(2): 240-250.
35 王艳鹏. 华北南缘宜阳地区中二叠统—下三叠统沉积和物源特征及其对盆山系统演化的指示[D]. 焦作: 河南理工大学, 2019: 91-93.
WANG Y P. Sedimentary and Provenance Characteristics of the Middle Permian-Lower Triassicin the Yiyang Area, Southern Margin of the North China and Its Implications for the Evolution of the Basin-mountain System[D]. Jiaozuo: Henan Polytechnic University, 2019: 91-93.
36 崔晨光, 张辉, 刘文香, 等. 鄂尔多斯盆地东部本溪组一段泥页岩元素地球化学特征——以山西临县招贤剖面和M115井为例[J]. 天然气地球科学,2022,33(6): 1001-1012.
CUI C G, ZHANG H, LIU W X, et al. Element geochemical characteristics of shale in the first member of Benxi Formation in eastern Ordos Basin: Take Zhaoxian section and M115 Well in Linxian County, Shanxi as examples[J]. Natural Gas Geoscience,2022,33(6): 1001-1012.
37 郑一丁, 雷裕红, 张立强, 等. 鄂尔多斯盆地东南部张家滩页岩元素地球化学、古沉积环境演化特征及油气地质意义[J]. 天然气地球科学, 2015, 26(7): 1395-1404.
ZHENG Y D, LEI Y H, ZHANG L Q, et al. Characteristics of element geochemistry and paleo-sedimentary environment evolution of Zhangjiatan shale in the southeast of Ordos Basin and its geological significance for oil and gas[J]. Natural Gas Geoscience, 2015, 26(7): 1395-1404.
[1] 张珈毓,王晓锋,吴疆,王庆涛,孙宜朴,卢颖忠,张东东,刘文汇,邱万鎏. 鄂尔多斯盆地南部上古生界烃源岩生排烃特征及天然气勘探潜力[J]. 天然气地球科学, 2022, 33(9): 1433-1445.
[2] 王杰,贾会冲,孙晓,陶成,张毅,马亮帮,王付斌,姜海健. 鄂尔多斯盆地富县古生界天然气成因及气源综合识别[J]. 天然气地球科学, 2022, 33(9): 1476-1484.
[3] 孙照通, 辛红刚, 吕成福, 冯胜斌, 周钱山, 淡卫东, 张英, 高雪, 党昭卿. 鄂尔多斯盆地长73亚段泥页岩型页岩油赋存状态与有机地球化学特征[J]. 天然气地球科学, 2022, 33(8): 1304-1318.
[4] 李旋,赵俊峰,王迪,胡超,赵旭东,王科,管斌,张海龙. 柴达木盆地西部地区早—中侏罗世沉积体系与古气候环境探讨[J]. 天然气地球科学, 2022, 33(7): 1060-1073.
[5] 高丽军,吴鹏,石雪峰,李勇,逄建东,杨铁梅. 海陆过渡相不同源储类型页岩储层关键参数测井识别及分类方法[J]. 天然气地球科学, 2022, 33(7): 1132-1143.
[6] 冯林杰, 蒋裕强, 武富礼, 武渝, 梁德民. 鄂尔多斯盆地延安西部地区马五1+2亚段正向低幅度构造成因及油气地质意义[J]. 天然气地球科学, 2022, 33(6): 944-954.
[7] 陈佳, 封从军, 俞天军, 陈刚, 唐明明, 孙萌思. 鄂尔多斯盆地延长气田Y113—Y133天然气井区盒8段致密储层物性下限[J]. 天然气地球科学, 2022, 33(6): 955-966.
[8] 崔晨光,张辉,刘文香,李仕芳,刘燕,宋换新,吴陈君,文志刚. 鄂尔多斯盆地东部本溪组一段泥页岩元素地球化学特征[J]. 天然气地球科学, 2022, 33(6): 1001-1012.
[9] 田继先, 纪宝强, 曾旭, 王晔桐, 李曜良, 孙国强. 柴北缘下干柴沟组深部碎屑岩储层发育特征及主控因素[J]. 天然气地球科学, 2022, 33(5): 720-730.
[10] 梁岳立,葛家旺,赵晓明,张喜,李树新,聂志宏. 鄂尔多斯盆地东缘山西组2段海陆过渡相页岩高分辨率层序划分及勘探地质意义[J]. 天然气地球科学, 2022, 33(3): 408-417.
[11] 王以城,张磊夫,邱振,彭思钟,封从军,孙萌思. 鄂尔多斯盆地东缘二叠系山23亚段海陆过渡相页岩岩相类型与储层发育特征[J]. 天然气地球科学, 2022, 33(3): 418-430.
[12] 谢卫东,王猛,王华,段宏跃. 海陆过渡相页岩气储层孔隙多尺度分形特征[J]. 天然气地球科学, 2022, 33(3): 451-460.
[13] 黄军平,林俊峰,张艳,刘新社,陈柱蓉,李相博,王雅婷. 鄂尔多斯盆地南缘下寒武统海相烃源岩有机地球化学特征与成藏贡献[J]. 天然气地球科学, 2022, 33(3): 461-471.
[14] 李剑锋,吴凯,刘曼,孔令印,马军,刘飞. 鄂尔多斯盆地彭阳地区侏罗系原油伴生气中H2S成因[J]. 天然气地球科学, 2022, 33(3): 472-483.
[15] 党文龙, 高岗, 刘建平, 姚泾利, 刚文哲, 杨尚儒, 段延娟, 张莉莉. 鄂尔多斯盆地奥陶系马家沟组盐下天然气成因类型及来源[J]. 天然气地球科学, 2022, 33(2): 207-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[3] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[4] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[5] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[6] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[7] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[8] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[9] 廖成君. VSP技术在锦612复杂断块油藏开发部署研究中的应用[J]. 天然气地球科学, 2005, 16(1): 117 -122 .
[10] 陈建阳,张志杰,于兴河 . AVO技术在水合物研究中的应用及应注意的问题[J]. 天然气地球科学, 2005, 16(1): 123 -126 .