天然气地球科学 ›› 2022, Vol. 33 ›› Issue (11): 1895–1905.doi: 10.11764/j.issn.1672-1926.2022.05.005

• 天然气开发 • 上一篇    

温度对多类型超深层碳酸盐岩气藏渗流能力的影响

张钰祥1,2,3(),杨胜来1(),王蓓东1,王元昊1,邓惠4,鄢友军4,闫海军2,陈掌星3   

  1. 1.中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
    2.中国石油勘探开发研究院,北京 100083
    3.加拿大卡尔加里大学化学与石油工程系,卡尔加里 T2N1N4
    4.中国石油西南油气田分公司勘探开发研究院,四川 成都 610041
  • 收稿日期:2022-04-13 修回日期:2022-05-20 出版日期:2022-11-10 发布日期:2022-11-23
  • 通讯作者: 杨胜来 E-mail:zhangyuxiang94cn@163.com;yangsl@cup.edu.cn
  • 作者简介:张钰祥(1994-),男,山东东营人,博士研究生,主要从事油气渗流理论与应用研究. E-mail:zhangyuxiang94cn@163.com.
  • 基金资助:
    国家自然科学基金项目“超深层碎屑岩油气藏渗流物理基础研究”(51774300);国家科技重大专项“深层碳酸盐岩气藏高效开发技术”(2016ZX05015-003)

Effects of temperature on seepage capacity for a multi-type ultra-deep carbonate gas reservoir

Yuxiang ZHANG1,2,3(),Shenglai YANG1(),Beidong WANG1,Yuanhao WANG1,Hui DENG4,Youjun YAN4,Haijun YAN2,Zhangxing CHEN3   

  1. 1.State Key Laboratory of Petroleum Resources and Exploration,China University of Petroleum(Beijing),Beijing 102249,China
    2.Research Institute of Petroleum Exploration & Development,PetroChina, Beijing 100083,China
    3.Department of Chemical and Petroleum Engineering,University of Calgary,Calgary T2N1N4,Canada
    4.Exploration and Development Research Institute of Southwest Oil & Gasfield Company,PetroChina,Chengdu 610041,China
  • Received:2022-04-13 Revised:2022-05-20 Online:2022-11-10 Published:2022-11-23
  • Contact: Shenglai YANG E-mail:zhangyuxiang94cn@163.com;yangsl@cup.edu.cn
  • Supported by:
    The Project of National Natural Science Foundation of China(51774300);the China National Science and Technology Major Project(2016ZX05015-003)

摘要:

超深层碳酸盐岩气藏埋藏深、温度高,高温对多类型储层渗流能力的变化规律尚不明确。选取高石梯—磨溪区块灯四段气藏储层岩心,通过测定升温和降温过程中岩样的气体单相渗透率和不同温度下的气水界面张力及气水两相相对渗透率,得到温度对多类型超深层碳酸盐岩气藏渗流能力的影响规律。研究结果表明:在20~120 ℃范围内,随温度改变,不同类型储层岩样气体单相渗流能力均呈幂函数变化,升温过程中气相渗透率下降受气体黏度升高、白云石晶体膨胀及岩石颗粒脆化后运移的共同影响,一次升温和降温后,缝洞型岩样由于微裂缝发育渗透率不可逆程度最高为82.52%,孔隙型岩样由于小孔喉发育次之为27.63%,孔洞型岩样最低为9.46%,缝洞型岩样为温敏型岩样,孔隙型和孔洞型岩样为耐温型岩样,多类型气藏的温度上限集中在44~50 ℃附近;温度升高主要通过降低水气黏度比来提高气驱水效率和气水两相渗流能力,地层温度下的水气黏度约为常温条件下的1/3,高温条件下多类型储层的气水相渗曲线更能代表实际地层的两相渗流特征。温度对多类型超深层碳酸盐岩气藏渗流能力的影响规律可为此类气藏的高效开发提供理论依据。

关键词: 超深层碳酸盐岩气藏, 温度, 气体单相渗流, 气水两相渗流, 气水物性

Abstract:

Ultra-deep carbonate gas reservoirs are deeply buried and high in temperature, and the change rule of high temperature on the seepage capacity of multi-type reservoirs is still unclear. The cores of the fourth member of Dengying Formation in the Gaoshiti-Moxi area were selected, the gas single-phase permeability of the rock samples during the heating and cooling process, the gas-water interfacial tension and the gas-water two-phase relative permeability at different temperatures were measured, and then the effect law of temperature on the seepage capacity of the multi-type ultra-deep carbonate gas reservoir was obtained. The research results show that: in the range of 20-120 ℃, with the change of temperature, the gas single-phase seepage capacity of different types of reservoir rock samples changes as a power function. The decrease of gas-phase permeability during the heating process is jointly affected by the increase of gas viscosity, the expansion of dolomite crystals, and the migration of rock particles after embrittlement. After one heating and cooling process, the irreversible degree of permeability of fractured-cavity type rock samples was the highest at 82.52% due to the development of micro-fractures, followed by 27.63% for pore type due to the development of small pores and throats, and the lowest was 9.46% for pore-cavity type. Fractured-cavity rock samples are temperature-sensitive rock samples, while pore type and pore-cavity type rock samples are temperature-resistant rock samples. The upper temperature limit of the target multi-type gas reservoir is concentrated around 46-50 ℃. The temperature increase mainly improves the gas-displacing water efficiency and the gas-water two-phase seepage capacity by reducing the water-gas viscosity ratio and the water-gas viscosity ratio at the formation temperature is about 1/3 of the normal temperature. The gas-water phase permeability curves of multi-type reservoirs under high temperature conditions can better represent the two-phase seepage characteristics of actual formations. The effect law of temperature on the seepage capacity of multi-type ultra-deep carbonate gas reservoirs can provide a theoretical basis for the efficient development of such gas reservoirs.

Key words: Ultra-deep carbonate gas reservoir, Temperature, Gas single-phase seepage, Gas-water two-phase seepage, Gas-water physical properties

中图分类号: 

  • TE311

图1

实验所用不同类型岩样照片"

表1

实验岩样基本物性"

样品

编号

岩样类型

长度

/cm

直径

/cm

孔隙度

/%

渗透率

/(10-3 μm2

DS4孔隙型10.256.955.9960.031
DS5孔洞型6.0426.513 511.1910.047
DS6缝洞型7.1346.495 511.99342.9

图2

TC-180型多功能驱替系统实验流程图1.流压泵;2.高压气水平衡器;3.高压岩心夹持器;4.围压泵;5.加热套;6.回压阀;7.回压泵;8.压力传感器;9.气液分离装置;10.气体流量计;11.高纯氮气瓶;12.气体增压系统"

图3

高温高压界面张力测定实验流程图"

图4

升温过程中各类型岩样渗流能力随温度变化曲线"

图5

各类型岩样升温过程中的温度上限(a)DS4温度上限;(b)DS5温度上限;(c)DS6温度上限"

表2

升温过程中各类型岩样的渗透率变化参数"

岩样

类型

样品

编号

渗透率变化范围

/(10-3 μm2

渗透率随温度变化趋势

60 ℃时渗透率

变化率/%

120 ℃时渗透率

变化率/%

渗透率递减系数/(10-3 μm2

温度上限

/℃

20 ℃60 ℃120 ℃
孔隙型DS40.014~0.080乘幂-58.15-81.510.004 830.000 510.000 12650
孔洞型DS50.023~0.085-51.10-72.650.003 560.000 5790.000 16747.5
缝洞型DS60.038~0.524-72.50-92.690.047 20.003 140.000 56647

图6

降温过程中各类型岩样渗流能力随温度变化曲线"

表3

降温过程中各类型岩样的渗透率变化参数"

岩样

类型

样品

编号

渗透率变化范围

/(10-5 μm2

渗透率随温度

变化趋势

60 ℃时渗透率

变化率/%

20 ℃时渗透率变化率/%渗透率递减系数/(10-3 μm2

温度上限

/℃

120 ℃60 ℃20 ℃
孔隙型DS41.4~5.8乘幂-68.61-27.630.000 096 20.000 3400.002 5346
孔洞型DS52.3~7.7-55.44-9.460.000 132 00.000 4360.002 4244.5
缝洞型DS63.8~9.2-90.10-82.520.000 156 00.000 4450.002 3348.5

图7

各类型岩样降温过程中的温度上限(a)DS4温度上限; (b)DS5温度上限;(c)DS6温度上限"

图8

120 MPa地层压力对应不同温度条件下的气水界面张力"

图9

气水物性随温度变化曲线"

图 10

不同类型岩样不同温度的气水相渗曲线对比"

表 4

不同温度下气水相渗曲线特征值"

储层

类型

岩样

编号

测试条件

残余水饱和度

/%

残余水饱和度下气相相对渗透率/小数

等渗点

含水

饱和度

/%

等渗点相对

渗透率

/小数

孔隙型DS4常温高压42.890.056 8560.039
高温高压34.390.148 4540.053
孔洞型DS5常温高压10.450.436 8620.09
高温高压6.380.515 0600.11
缝洞型DS6常温高压61.560.362 4820.10
高温高压53.350.624 080.450.13

学术精要数据库主页截图"

1 何祖清,李晓益,龙武,等. 考虑温度影响的碳酸盐岩储层应力敏感实验研究[J]. 成都理工大学学报(自然科学版),2021,48(5):626-631.
HE Z Q,LI X Y,LONG W,et al. Experimental study on stress sensitivity of carbonate reservior considering the effect of temperature[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2021,48(5):626-631.
2 郭肖,杜志敏,姜贻伟,等. 温度和压力对气水相对渗透率的影响[J]. 天然气工业,2014,34(6):60-64.
GUO X,DU Z M,JIANG Y W,et al. Can gas-water relative permeability measured under experiment conditions be reliable for the development guidance of a real HPHT reservior?[J]. Natural Gas Industry,2014,34(6):60-64.
3 方建龙,郭平,肖香姣,等. 高温高压致密砂岩储集层气水相渗曲线测试方法[J]. 石油勘探与开发,2015,42(1):84-87.
FANG J L,GUO P,XIAO X J,et al.Gas-water relative permeability measurement of high temperature and high pressure tight gas reservoirs[J].Petroleum Exploration and Development,2015,42(1):84-87.
4 李治平,郭珍珍,林娜. 考虑实际界面张力的凝析气井临界携液流量计算方法[J]. 科技导报,2014,32(23):28-32.
LI Z P,GUO Z Z,LIN N. Calculation method of critical flow rate in condensate gas wells considering real interfacial tension[J]. Science & Technology Review,2014,32(23):28-32.
5 郭肖,朱争,高涛,等. 温度对低渗透储层应力敏感影响[J]. 大庆石油地质与开发,2015,34(4):82-87.
GUO X,ZHU Z,GAO T,et al. Influences of the temperature on the stress-sensitivity in low-permeability reservoirs[J].Petro-leum Geology and Oilfield Development in Daqing,2015,34(4):82-87.
6 贺玉龙,杨立中. 温度和有效应力对砂岩渗透率的影响机理研究[J]. 岩石力学与工程学报,2005,24(14):2420-2427.
HE Y L,YANG L Z. Mechanism of effects of temperature and effective stress on permeability of sandstone[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(14):2420-2427.
7 李学成,冯增朝,郭纪哲,等. 温度和应力对砂岩渗透率影响规律研究[J]. 煤炭科学技术,2019,47(4):96-100.
LI X C,FENG Z C,GUO J Z,et al. Study on influence laws of temperature and stress on sandstone permeability[J]. Coal Science and Technology,2019,47(4):96-100.
8 梁冰,高红梅,兰永伟. 岩石渗透率与温度关系的理论分析和试验研究[J].岩石力学与工程学报,2005,24(12):2009-2012.
LIANG B,GAO H M,LAN Y W. Theoretical analysis and experimental study on relation between rock permeability and temperature[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(12):2009-2012.
9 汪周华,肖阳,郭平,等. 缝洞型碳酸盐岩气藏高温高压气水两相渗流特征[J]. 油气藏评价与开发,2017,7(2):47-52.
WANG Z H,XIAO Y,GUO P,et al. Gas-water flowing characteristics under high temperature and high pressure in fractu-redcavity carbonate gas reservoir[J]. Reservoir Evaluation and Development,2017,7(2):47-52.
10 钟晓,杜建芬.气水相渗特征与高温高压实验研究[J]. 重庆科技学院学报(自然科学版),2013,15(3):70-73.
ZHONG X,DU J F. Gas-water permeability characteristics and high temperature and high pressure experimental study[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition),2013,15(3):70-73.
11 董平川,江同文,唐明龙. 地层条件下凝析气藏的多相渗流特性[J]. 岩石力学与工程学报,2008,27(11):2244-2251.
DONG P C,JIANG T W,TANG M L. Relative permeability law of multiphase seepage under high temperature and pressure in a gas condensate reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(11):2244-2251.
12 WAN T,YANG S,WANG L,et al. Experimental investigation of two-phase relative permeability of gas and water for tight gas carbonate under different test conditions[J]. Oil & Gas Science and Technology,2019,74:23.
13 HATIBOGLU C U,BABADAGLI T. Experimental and visual analysis of co- and counter-current spontaneous imbibition for different viscosity ratios, interfacial tensions, and wettabilities[J]. Journal of Petroleum Science and Engineering,2010,70:214-228.
14 ESMAEILI S,MODARESGHAZANI J,SARMA H, et al. Effect of temperature on relative permeability-role of viscosity ratio[J]. Fuel,2020,278:118318.
15 王苛宇,蒲万芬,申哲娜,等. 温度对特低渗油藏油水相对渗透率的影响[J]. 断块油气田,2013,20(3):346-348.
WANG K Y,PU W F,SHEN Z N,et al. Effect of temperature on oil-water relative permeability in ultra-low permeability reservoir[J].Fault-Block Oil & Gas Field,2013,20(3):346-348.
16 KAMARI A,NIKOOKAR M,SAHRANAVARD L,et al. The evaluation of the impact of wettability alteration and oil relative permeability changes with temperature during cyclic steam injection in naturally fractured reservoirs using horizontal wells[J].Petroleum Science and Technology,2015,33(6):709-716.
17 EHRLICH R. The effect of temperature on water-oil imbibition relative permeability[J]. SPE Journal,1970,3214
18 张钰祥,杨胜来,李强,等. 应力对超深层碳酸盐岩气藏孔喉结构的影响[J/OL]. 油气地质与采收率:1-11[2022-09-26]. DOI:10.13673/j.cnki.cn37-1359/te.202203041.
ZHANG Y X,YANG S L,LI Q,et al. Effects of stress on pore and throat structures of ultra-deep carbonate gas reservoirs[J/OL]. Petroleum Geology and Recovery Efficiency:1-11.[2022-09-26].DOI:10.13673/j.cnki.cn37-1359/te.202203041.
19 张钰祥,杨胜来,王蓓东,等. 用径向流产能模拟法确定超深层碳酸盐岩气藏储层物性下限——以高石梯—磨溪区块为例[J/OL]. 大庆石油地质与开发:1-8[2022-06-28]. DOI:10.19597/J.ISSN.1000-3754.202203021.
ZHANG Y X,YANG S L,WANG B D,et al. Determining ultra⁃deep carbonate gas reservoir property cutoffs by radial flow productivity simulation method:Taking Gaoshiti⁃Moxi Block as an example[J/OL]. Petroleum Geology & Oilfield Development in Daqing:1-8[2022-06-28]. DOI:10.19597/J.ISSN.1000-3754.202203021.
20 李程辉,李熙喆,高树生,等. 高石梯—磨溪区块灯影组碳酸盐岩气藏孔隙结构特征[J]. 科学技术与工程,2015,15(24):72-78,101.
LI C H,LI X Z,GAO S S,et al. Pore structure characteristics of Dengying Formation carbonate gas reservoir of Gaoshiti-Moxi Block[J]. Science Technology and Engineering,2015,15(24):72-78,101.
21 ZHANG Y,YANG S,ZHANG Z,et al. Multiscale pore structure characterization of an ultra-deep carbonate gas reservoir[J]. Journal of Petroleum Science and Engineering,2022,208:109751.
22 闫海军,邓惠,万玉金,等. 四川盆地磨溪区块灯影组四段强非均质性碳酸盐岩气藏气井产能分布特征及其对开发的指导意义[J]. 天然气地球科学,2020,31(8):1152-1160.
YAN H J,DENG H,WAN Y J,et al. The gas well productivity distribution characteristics in strong heterogeneity carbonate gas reservoir in the fourth member of Dengying Formation in Moxi area,Sichuan Basin[J]. Natural Gas Geoscience,2020,31(8):1152-1160.
23 王璐,杨胜来,彭先,等. 缝洞型碳酸盐岩气藏多类型储集层孔隙结构特征及储渗能力——以四川盆地高石梯—磨溪地区灯四段为例[J]. 吉林大学学报(地球科学版),2019,49(4):947-958.
WANG L,YANG S L,PENG X,et al.Pore structure characte-ristics and storage-seepage capability of multi-type reservoirs in fracture-cavity carbonate gas reservoirs:A case study of Deng-4 Member in Gaoshiti-Moxi area, Sichuan Basin[J]. Journal of Jilin University (Earth Science Edition),2019,49(4):947-958.
24 吴刚,邢爱国,张磊. 砂岩高温后的力学特性[J]. 岩石力学与工程学报,2007,26(10):2110-2116.
WU G,XING A G,ZHANG L. Mechanical charactistics of sandstone after high temperatures[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(10):2110-2116.
25 于鑫,李皋,陈泽,等. 川西须家河组致密砂岩高温后的物理力学特征参数试验研究[J]. 地质力学学报,2021,27(1):1-9.
YU X,LI G,CHEN Z,et al. Experimental study on physical and mechanical characteristics of tight sandstones in the Xujiahe Formation in western Sichuan after high-temperature exposure[J]. Journal of Geomechanics,2021,27(1):1-9.
26 李骞,张钰祥,李滔,等. 基于数字岩心建立的评价碳酸盐岩完整孔喉结构的方法——以川西北栖霞组为例[J]. 油气地质与采收率,2021,28(3):53-61.
LI Q,ZHANG Y X,LI T,et al. A method for evaluating complete pore-throat structure of carbonate rocks based on digital cores:A case study of Qixia Formation in Northwest Sichuan[J]. Petroleum Geology and Recovery Efficiency,2021,28(3):53-61.
[1] 郭飞飞. 南襄盆地南阳凹陷古近系核桃园组三段储层流体包裹体特征与成藏期次[J]. 天然气地球科学, 2022, 33(7): 1049-1059.
[2] 方镕慧, 刘晓强, 张聪, 李美俊, 夏响华, 黄志龙, 杨程宇, 韩秋雅, 汤韩琴. 温度压力耦合作用下的页岩气吸附分子模拟[J]. 天然气地球科学, 2022, 33(1): 138-152.
[3] 李海涛, 张庆, 于皓, 辛野, 罗红文, 向雨行, 李颖, 叶铠睿. 水平井分段压裂注液过程中温度分布预测[J]. 天然气地球科学, 2021, 32(11): 1601-1609.
[4] 席斌斌, 申宝剑, 蒋宏, 杨振恒, 王小林. 天然气藏中CH4—H2O—NaCl体系不混溶包裹体群捕获温压恢复及应用[J]. 天然气地球科学, 2020, 31(7): 923-930.
[5] 张宝鑫, 邓泽, 傅雪海, 郝明, 周荣福, 李玉寿, 王振至. 温度对中高阶烟煤甲烷吸附—常压/带压解吸过程中煤体变形影响实验[J]. 天然气地球科学, 2020, 31(12): 1826-1836.
[6] 罗红文, 李海涛, 刘会斌, 孙涛, 卢宇, 李颖. 低渗气藏两相渗流压裂水平井温度剖面预测[J]. 天然气地球科学, 2019, 30(3): 389-399.
[7] 刘壮,郭建春,马辉运,周长林,苟波,任冀川. 提升高温气井酸压有效缝长方法[J]. 天然气地球科学, 2019, 30(12): 1694-1700.
[8] 孙可欣, 李贤庆, 魏强, 梁万乐, 李剑, 张光武. 利用流体历史分析技术研究库车坳陷大北气田油气充注史[J]. 天然气地球科学, 2018, 29(9): 1289-1300.
[9] 胡安平,沈安江,潘立银,王永生,李娴静,韦东晓. 二元同位素在碳酸盐岩储层研究中的作用[J]. 天然气地球科学, 2018, 29(1): 17-27.
[10] 李靖, 李相方, 王香增, 李莹莹, 石军太, 冯东, 彭泽阳, 于鹏亮. “一点法”不同温度吸附曲线预测模型[J]. 天然气地球科学, 2016, 27(6): 1116-1127.
[11] 张明峰,熊德明,吴陈君,马万云,孙丽娜,妥进才. 准噶尔盆地东部地区侏罗系烃源岩及其低熟气形成条件[J]. 天然气地球科学, 2016, 27(2): 261-267.
[12] 王鹏,刘四兵,沈忠民,黄飞,罗自力,陈飞. 四川盆地上三叠统气藏成藏年代及差异[J]. 天然气地球科学, 2016, 27(1): 50-59.
[13] 杨平,印峰,余谦,汪正江,刘家洪,张娣,张道光. 四川盆地东南缘有机质演化异常与古地温场特征[J]. 天然气地球科学, 2015, 26(7): 1299-1309.
[14] 石书缘,胡素云,刘伟,徐兆辉,李伯华,武娜. 综合运用碳氧同位素和包裹体信息判别古岩溶形成期次[J]. 天然气地球科学, 2015, 26(2): 208-217.
[15] 陈哲龙,柳广弟,卢学军,黄志龙,丁修建. 应用流体包裹体研究储层油气充注特征——以二连盆地为例[J]. 天然气地球科学, 2015, 26(1): 60-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王祥, 刘玉华, 张敏, 胡素云, 刘红俊. 页岩气形成条件及成藏影响因素研究[J]. 天然气地球科学, 2010, 21(2): 350 -356 .
[2] 孙东,杨丽莎,王宏斌,郑多明,孙勤华,李国会,代冬冬,房启飞. 塔里木盆地哈拉哈塘地区走滑断裂体系对奥陶系海相碳酸盐岩储层的控制作用[J]. 天然气地球科学, 2015, 26(S1): 80 -87 .
[3] 吕正祥, 王先东, 吴家洋, 卿元华. 渤海海域中部古近系湖相碳酸盐岩储层成岩演化特征[J]. 天然气地球科学, 2018, 29(7): 921 -931 .
[4] 张水昌, 何坤, 王晓梅, 胡国艺, 张斌, 米敬奎, 苏劲. 深层多途径复合生气模式及潜在成藏贡献[J]. 天然气地球科学, 2021, 32(10): 1421 -1435 .
[5] 何建华,李勇,邓虎成,唐建明,王园园. 基于多元力学实验的深层页岩气储层脆性影响因素分析与定量评价[J]. 天然气地球科学, 2022, 33(7): 1102 -1116 .
[6] 李科亮,王建强,刘文汇,陈容涛,裴立新,陈晓艳,邓辉,彭恒. 渤海西南部石炭系—二叠系残存特征及生烃物质基础[J]. 天然气地球科学, 2022, 33(7): 1091 -1101 .
[7] 秦胜飞, 李济远, 梁传国, 周国晓, 袁苗. 中国中西部富氦气藏氦气富集机理——古老地层水脱氦富集[J]. 天然气地球科学, 2022, 33(8): 1203 -1217 .
[8] 曹飞, 卢志强. 相约束贝叶斯同时反演技术及其应用[J]. 天然气地球科学, 2022, 33(10): 1702 -1711 .