天然气地球科学 ›› 2022, Vol. 33 ›› Issue (9): 1363–1383.doi: 10.11764/j.issn.1672-1926.2022.05.001

• 天然气地质学 •    下一篇

塔里木盆地寒武系盐下大气区“裂—隆—坳”格架控藏模式

易士威1(),李明鹏1(),郭绪杰2,杨帆2,杨海军3,孙瑞娜2,王孝明3   

  1. 1.中国石油勘探开发研究院,北京 100083
    2.中国石油勘探与生产分公司,北京 100007
    3.中国石油塔里木油田分公司,新疆 库尔勒 841000
  • 收稿日期:2022-01-14 修回日期:2022-04-29 出版日期:2022-09-10 发布日期:2022-09-09
  • 通讯作者: 李明鹏 E-mail:ktb_ysw@petrochina.com.cn;limingpeng@petrochina.com.cn
  • 作者简介:易士威(1964-),男,河北保定人,教授级高级工程师,博士,主要从事油气地质综合研究与勘探部署工作.E-mail:ktb_ysw@petrochina.com.cn.
  • 基金资助:
    国家科技重大专项(2016ZX05007-002)

Rift-uplift-depression reservoir-controlling model of large gas province in Cambrian pre-salt, Tarim Basin

Shiwei YI1(),Mingpeng LI1(),Xujie GUO2,Fan YANG2,Haijun YANG3,Ruina SUN2,Xiaoming WANG3   

  1. 1.PetroChina Research Institute of Petroleum Exploration and Development,Beijing 100083,China
    2.PetroChina Exploration and Production Company,Beijing 100007,China
    3.Tarim Oilfield Company,PetroChina,Korla 841000,China
  • Received:2022-01-14 Revised:2022-04-29 Online:2022-09-10 Published:2022-09-09
  • Contact: Mingpeng LI E-mail:ktb_ysw@petrochina.com.cn;limingpeng@petrochina.com.cn
  • Supported by:
    The China National Science and Technology Major Project(2016ZX05007-002)

摘要:

塔里木盆地寒武系盐下具备形成复式大油气区的成藏条件,是勘探程度最低、勘探潜力最大的战略接替领域。但多年的勘探一直未取得重大突破,关键问题是由于生烃中心、规模性滩体储层控制因素及空间展布不清而导致有利勘探方向和区带不明。鉴于此,综合应用地震和钻井、测井、录井及地球化学等资料,开展寒武系盐下控源、控储、控盖和控藏研究,构建寒武系盐下领域控藏模式,明确有利区带和勘探突破方向。取得了以下几点认识:①古裂谷控制生烃中心。南华系—震旦系形成的断坳结构为下寒武统的发育提供了构造背景,控制了寒武系玉尔吐斯组的沉积,在裂谷控制的负向构造区玉尔吐斯组厚度大,形成生烃中心。②古隆起控制滩相白云岩储层。与南华纪古裂谷同时形成的古隆起控制了肖尔布拉克组高能滩的发育与分布,塔南古隆起南北两侧形成规模性白云岩滩相储层。③古坳陷控制膏盐岩盖层发育。在中晚寒武世由于轮台—古城近南北向镶边台缘的发育造成塔西台地封闭从而形成强烈的蒸发环境,在统一的台内坳陷沉积了广覆式膏盐岩盖层。④“裂—隆—坳”格架控制生储盖时空匹配及油气分布。构建了稳定型“裂—隆—坳”、活动型“裂—隆—坳”、过渡型“裂—隆—坳”3种控藏模式,指出稳定型和过渡型地区是寻找寒武系盐下大气藏的主要勘探方向,明确阿瓦提凹陷和满西凹陷之间的阿满低隆起是寒武系盐下大气田勘探的首选目标区。

关键词: 塔里木盆地, 寒武系盐下, 古裂谷, 古隆起, 古坳陷, “盐包滩”组合, 控藏模式

Abstract:

The Cambrian pre-salt had the accumulation conditions for compound large reservoir, and was the strategic replacement area with the lowest exploration degree and the largest exploration potential in Tarim Basin. However, no significant discoveries have been made in the exploration for many years, the key problem is that the unclear of controlling and space distribution of hydrocarbon generation center and scale beach reservoir result in the ambiguity of favorable exploration directions and zones. In view of this, comprehensive application of seismic, drilling, well-logging, mud-logging and geochemical data has been carried out to study the source controlling, reservoir controlling, cap control and reservoir controlling of the Cambrian subsalt area, constructing the reservoir controlling model and defining the favorable zones and exploration breakthrough direction. The following points have been gained: (1)The paleo-rifts controlled hydrocarbon generation center. The rift depression formed in Nanhua System to Sinian System provided the structural background for the development of the Early Cambrian, and controlled the deposition of the Cambrian Yuertusi Formation. In the negative tectonic area, the thickness of Yuertusi Formation was large and formed the hydrocarbon generating center. (2)The paleo-uplift controlled the development of beach facies dolomite reservoir. The paleo-uplift formed at the same time with Nanhua System paleo-rift controlled the development and distribution of high energy beach in Xiaerbulake Formation, and large-scale dolomitic shoal facies reservoirs were formed on both sides of the Tanan paleo-uplift. (3) The paleo-depression controlled the distribution of gypsum-salt rock cap. In the Middle and Late Cambrian, due to the development of the near north-south edge platform margin, the Taxi platform was closed and formed a strong evaporation environment, and a wide covering paste rock cap was deposited in the unified depression within the platform. (4)The matching of rift-uplift-depression controlled the formation and distribution of oil and gas. Three types of reservoir-controlling models which were stable rift-uplift-depression, active rift-uplift-depression and transitional rift-uplift-depression were established, besides, indicated the stable and transitional areas were the main exploration directions, and the Aman low uplift between Awati Sag and Manxi Sag was the preferred target area.

Key words: Tarim Basin, Cambrian pre-salt, Paleo-rift, Paleo-uplift, Paleo-depression, Beach surrounded with salt, Reservoir-controlling model

中图分类号: 

  • TE122.1

图1

塔里木盆地构造单元划分、寒武系—震旦系重点井位分布及地震剖面位置"

图2

塔里木盆地南华系—寒武系地层综合柱状图及储盖组合划分"

图3

塔里木盆地寒武系盐下3种储盖组合类型连井剖面图"

图4

塔里木盆地台间裂谷控源地震剖面(a)及连井剖面(b)(a)塔西台地—满加尔裂谷—罗西台地地震剖面;(b)轮探1井—米兰1井连井剖面"

图5

塔里木盆地台缘裂谷控源地震剖面(a)及露头有机质丰度剖面(b)(a)柯坪断隆地震剖面;(b)柯坪地区玉尔吐斯组露头烃源岩有机质丰度剖面"

图6

塔里木盆地寒武系盐下台内古裂谷控源地震剖面及钻井、岩心烃源岩特征(a)塔中地区台内古裂谷地震剖面;(b)肖塘地区台内古裂谷地震剖面;(c)中寒1井下寒武统泥岩岩屑实测TOC;(d)、(e)中寒1井岩心;(f)、(g)中寒1井岩屑薄片"

图7

塔里木盆地寒武系盐下古隆起控滩地震剖面及肖尔布拉克组岩相古地理图(a)古隆起控滩综合地震剖面;(b)台间裂谷控制台缘滩沉积地震剖面;(c)台内滩地震剖面;(d)下寒武统肖尔布拉克组岩相古地理图"

图8

塔里木盆地寒武系盐下古隆起控滩连井剖面(a)巴楚隆起柯探1井—楚探1井连井剖面;(b)塔中隆起中寒1井—塔参1井连井剖面"

图9

不同类型储层薄片特征(a)城探3井,下丘里塔格组,7 368.90 m,藻凝块细—中晶云岩,溶蚀孔洞发育;(b)城探2井,下丘里塔格组,6 662.63 m,表附菌格架岩;(c)城探1井,下丘里塔格组,6 888.38 m,残余砂屑、鲕粒细晶云岩;(d)轮探1井,吾松格尔组,8 220 m,残余颗粒细晶云岩;(e)新和1井,肖尔布拉克组,7 648 m,致密灰岩;(f)新和1井,7 435 m,泥粉晶灰岩;(g)舒探1井,肖尔布拉克组,1 918.8 m,溶蚀孔洞发育;(h)舒探1井,肖尔布拉克组,1 885.6 m,藻架溶孔;(i)舒探1井,肖尔布拉克组,1 886 m,藻砂屑白云岩,粒间溶孔发育;(j)中寒1井,肖尔布拉克组,7 385 m,溶蚀孔洞发育;(k)中深5井,肖尔布拉克组,6 554 m,裂缝发育;(l)楚探1井,肖尔布拉克组,鲕粒白云岩,粒间溶孔发育,溶孔内充填沥青"

图10

塔里木盆地寒武系盐下古坳陷控盖及盖层评价(a)中寒武统盖层地震相特征;(b)中寒武统膏盐岩厚度;(c)不同岩性盖层突破压力;(d)不同岩性盖层孔隙度与突破压力关系;(e)不同岩性盖层渗透率与突破压力关系"

图11

稳定型“裂—隆—坳”格架控藏模式(a)过轮探1井地震剖面;(b)古城地区地震剖面;(c)稳定型“裂—隆—坳”格架地震剖面;(d)稳定型“裂—隆—坳”格架控藏模式"

图12

活动型“裂—隆—坳”格架控藏模式(a)阿瓦提凹陷—和4井地震剖面;(b)阿瓦提凹陷—柯探1井(京能)地震剖面;(c)活动型“裂—隆—坳”格架控藏模式"

图13

过渡型“裂—隆—坳”格架控藏模式(a)塔中过渡型“裂—隆—坳”格架地震剖面;(b)塔中过渡型“裂—隆—坳”格架成藏模式"

图14

塔里木盆地寒武系盐下阿满低隆成藏条件(a)阿满低隆寒武系玉尔吐斯组顶拉平地震剖面;(b)满深1低隆起成藏条件"

图15

塔里木盆地寒武系盐下阿满低隆富源凸起成藏模式(a)富源凸起地震剖面;(b)富源凸起成藏模式"

1 吴海,赵孟军,鲁雪松,等.膏盐岩层控藏机制研究进展[J].地质科技情报,2016,35(3):77-86.
WU H,ZHAO M J,LU X S,et al. Research progress of hydrocarbon accumulation mechanism controlled by salt[J].Geological Science and Technology Information,2016,35(3):77-86.
2 范存辉,王保全,朱雨萍,等.盐下油气藏勘探开发现状与发展趋势[J].特种油气藏,2012,19(4):7-10.
FAN C H, WANG B Q, ZHU Y P, et al. Present situation and development trend of under salt reservoirs[J].Special Oil and Gas Reserviors,2012,19(4):7-10.
3 王大鹏,白国平,徐艳,等.全球古生界海相碳酸盐岩大油气田特征及油气分布[J].古地理学报,2016,18(1):80-92.
WANG D P, BAI G P, XU Y, et al. Characteristics and hydrocarbon distribution of the Paleozioc giant marine carbonate rock oil-gas fields in the world[J].Journal of Palaeogeography,2016,18(1):80-92.
4 魏国齐,杜金虎,徐春春,等.四川盆地高石梯—磨溪地区震旦系—寒武系大型气藏特征与聚集模式[J].石油学报,2015,36(1):1-12.
WEI G Q, DU J H, XU C C, et al. Characteristics and accumulation modes of large gas reservoirs in Sinian-Cambrian of Gaoshiti Moxi region, Sichuan Basin[J].Acta Petrolei Sinica,2015,36(1):1-12.
5 魏国齐,杨威,杜金虎,等.四川盆地高石梯一磨溪古隆起构造特征及对特大型气田形成的控制作用[J]. 石油勘探与开发,2015,42(3):257-265.
WEI G Q, YANG W, DU J H, et al. Tectonic features of Gaoshiti-Moxi paleo-uplift and its controls on the formation of a giant gas field, Sichuan Basin, SW China[J].Petroleum Exploration & Development,2015,42(3):257-265.
6 魏国齐,杨威,谢武仁,等.四川盆地震旦系—寒武系大气田形成条件、成藏模式与勘探方向[J].天然气地球科学,2015,26(5):785-795.
WEI G Q, YANG W, XIE W R, et al. Formation conditions, accumulation models and exploration direction of large gas fields in Sinian-Cambrian, Sichuan Basin[J].Natural Gas Geoscience,2015,26(5):785-795.
7 杜金虎,王招明,胡素云,等.库车前陆冲断带深层大气区形成条件与地质特征[J].石油勘探与开发,2012,39(4):385-393.
DU J H, WANG Z M, HU S Y, et al. Formation and geological characteristics of deep giant gas provinces in the Kuqa foreland thrust belt, Tarim Basin, NW China[J].Petroleum Exploration & Development,2012,39(4):385-393.
8 杜金虎,田军,李国欣,等.库车坳陷秋里塔格构造带的战略突破与前景展望[J].中国石油勘探,2019,24(1):16-23.
DU J H, TIAN J, LI G X, et al. Strategic breakthrough and prospect of Qiulitage structural belt in Kuqa Depression[J]. China Petroleum Exploration,2019,24(1):16-23.
9 王招明,李勇,谢会文,等.库车前陆盆地超深油气地质理论与勘探实践[M].北京:石油工业出版社,2017.
WANG Z M, LI Y, XIE H W, et al. Ultra-deep Oil and Gas Geological Theory and Exploration Practice in Kuqa Foreland Basin[M].Beijing:Petroleum Industry Press,2017.
10 王招明,谢会文,陈永权,等.塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J].中国石油勘探,2014,19(2):1-13.
WANG Z M, XIE H W, CHEN Y Q, et al. Discovery and exploration of Cambrian subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 Well in Tarim Basin[J].China Petroleum Exploration,2014,19(2):1-13.
11 朱光有,陈斐然,陈志勇,等.塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J].天然气地球科学,2016,27(1):8-21.
ZHU G Y, CHEN F R, CHEN Z Y, et al. Discovery and basic characteristics of the high-quality source rocks of the Cambrian Yuertusi Formation in Tarim Basin[J].Natural Gas Geoscience,2016,27(1):8-21.
12 潘文庆,陈永权,熊益学,等.塔里木盆地下寒武统烃源岩沉积相研究及其对油气勘探指导意义[J].天然气地球科学,2015,26(7):1224-1232.
PAN W Q, CHEN Y Q, XIONG Y X, et al. Sedimentary facies research and implications to advantaged exploration regions on Lower Cambrian source rocks, Tarim Basin[J].Natural Gas Geoscience,2015,26(7):1224-1232.
13 陈永权,严威,韩长伟,等.塔里木盆地寒武纪—早奥陶世构造古地理与岩相古地理格局再厘定——基于地震证据的新认识[J].天然气地球科学,2015,26(10):1831-1843.
CHEN Y Q, YAN W, HAN C W, et al. Redefinition on structural paleogeography and lithofacies paleogeography framework from Cambrian to Early Ordovician in the Tarim Basin: A new approach based on seismic stratigraphy evidence[J].Natural Gas Geoscience,2015,26(10):1831-1843.
14 熊冉,郑剑锋,黄理力,等.塔里木盆地寒武系肖尔布拉克组丘滩体露头地质建模及地震正演模拟[J].天然气地球科学,2020,31(5):735-744.
XIONG R, ZHENG J F, HUANG L L, et al. Mound-shoal complexes geological and seismic forward modeling of the Cambrian Xiaoerbulake Formation in the Tarim Basin[J].Natural Gas Geoscience,2020,31(5):735-744.
15 杜金虎,潘文庆.塔里木盆地寒武系盐下白云岩油气成藏条件与勘探方向[J].石油勘探与开发,2016,43(3):327-339.
DU J H, PAN W Q. Accumulation conditions and play targets of oil and gas in the Cambrian subsalt dolomite, Tarim Basin, NW China[J].Petroleum Exploration & Development,2016,43(3):327-339.
16 贾承造.中国塔里木盆地构造特征[M].北京:石油工业出版社,1997.
JIA C Z. Structural Characteristics of Tarim Basin, China[M]. Beijing: Petroleum Industry Press,1997.
17 郑孟林,王毅,金之钧,等.塔里木盆地叠合演化与油气聚集[J].石油与天然气地质,2014,35(6):925-934.
ZHENG M L, WANG Y, JIN Z J, et al. Superimposition, evolution and petroleum accumulation of Tarim Basin[J].Oil & Gas Geology,2014,35(6):925-934.
18 易士威,杜金虎,杨海军,等.塔里木盆地下古生界成藏控制因素及勘探思路[J].中国石油勘探,2012,17(3):1-7.
YI S W, DU J H, YANG H J, et al. Controlling factors and exploration idea about reservoir formation of Lower Palaeozoic, Tarim Basin, China[J]. China Petroleum Exploration,2012,17(3):1-7.
19 邹亚锐,塔吉古丽,邢作云,等.塔里木新元古代—古生代沉积盆地演化[J].地球科学(中国地质大学学报),2014,39(8):1200-1216.
ZOU Y R, TAJI G L, XING Z Y, et al. Evolution of sedimentary basins in Tarim during Neoproterozoic-Paleozoic[J]. Earth Science(Journal of China University of Geosciences),2014,39(8):1200-1216.
20 易士威,李明鹏,郭绪杰,等.塔里木盆地南华纪古裂谷对寒武系沉积的控制及勘探意义[J].石油学报,2020,41(11):1293-1308.
YI S W, LI M P, GUO X J, et al. Breakthrough direction of Cambrian pre-salt exploration fields in Tarim Basin[J]. Acta Petrolei Sinica,2020,41(11):1293-1308.
21 闫磊,杨敏,张君龙,等.塔里木盆地塔东地区寒武系烃源岩分布及有利区带评价优选[J].天然气地球科学,2020,31(5):667-674.
YAN L, YANG M, ZHANG J L, et al. Distribution of Cambrian source rocks and evaluation and optimization of favorable zones in East Tarim Basin[J]. Natural Gas Geoscience,2020,31(5):667-674.
22 赵孟军,王招明,潘文庆,等.塔里木盆地满加尔凹陷下古生界烃源岩的再认识[J].石油勘探与开发,2008,35(4):417-423.
ZHAO M J, WANG Z M, PAN W Q, et al. Lower Palaeozoic source rocks in Manjiaer Sag, Tarim Basin[J]. Petroleum Exploration & Development,2008,35(4):417-423.
23 张纪智,王招明,杨海军,等.塔里木盆地中深地区寒武系盐下白云岩油气来源及差异聚集[J].石油勘探与开发,2017,44(1):40-47.
ZHANG J Z, WANG Z M, YANG H J, et al. Origin and differential accumulation of hydrocarbons in Cambrian sub-salt dolomite reservoirs in Zhongshen area, Tarim Basin, NW China[J].Petroleum Exploration & Development,2017,44(1):40-47.
24 李朋威,罗平,宋金民,等.微生物碳酸盐岩储层特征与主控因素——以塔里木盆地西北缘上震旦统—下寒武统为例[J].石油学报,2015,36(9):1074-1089.
LI P W, LUO P, SONG J M, et al. Characteristics and main controlling factors of microbial carbonate reservoirs:A case study of Upper Sinian-Lower Cambrian in the northwestern margin of Tarim Basin[J]. Acta Petrolei Sinica,2015,36(9):1074-1089.
25 朱永进,郑剑锋,刘玲利,等.塔里木盆地下寒武统吾松格尔组沉积期岩相古地理与勘探意义[J].天然气地球科学,2022,33(1):1-12.
ZHU Y J, ZHENG J F, LIU L L, et al. Lithofacies paleogeography and exploration significance of Lower Cambrian Wusonger Formation depositional stage, Tarim Basin, NW China[J]. Natural Gas Geoscience,2022,33(1):1-12.
26 郑剑锋,黄理力,袁文芳,等.塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J].天然气地球科学,2020,31(5):698-709.
ZHENG J F, HUANG L L, YUAN W F, et al. Geochemical features and its significance of sedimentary and diagenetic environment in the Lower Cambrian Xiaoerblake Formation of Keping area,Tarim Basin[J]. Natural Gas Geoscience, 2020,31(5):698-709.
27 厉玉乐,王显东,孙效东,等.古城低凸起构造演化及有利勘探方向[J].大庆石油地质与开发,2014,33(5):97-102.
LI Y L, WANG X D, SUN X D, et al. Structural evolution and favorable exploration direction for Gucheng low uplift[J]. Petroleum Geology and Oilfield Development in Daqing,2014,33(5):97-102.
28 闫博,张友,朱可丹,等.塔里木盆地古城地区寒武系丘滩体储层特征与控制因素[J].天然气地球科学,2021,32(10):1463-1473.
YAN B, ZHANG Y, ZHU K D, et al. Reservoir characteristics and controlling factors of Cambrian mound-beach in Gucheng area,Tarim Basin[J].Natural Gas Geoscience,2021,32(10):1463-1473.
29 熊益学,陈永权,关宝珠,等.塔里木盆地下寒武统肖尔布拉克组北部台缘带展布及其油气勘探意义上[J].沉积学报,2015,33(2):408-415.
XIONG Y X, CHEN Y Q, GUAN B Z, et al. Distribution of northern platform margin and implications to favorable exploration regions on Lower Cambrian Xiaoerbulake Formation, Tarim Basin[J]. Acta Sedimentologica Sinica,2015,33(2):408-415.
30 李斌,彭军,杨素举,等.塔里木盆地巴楚地区寒武系肖尔布拉克组储层特征及成因模式[J].石油实验地质,2017,39(6):797-811.
LI B, PENG J, YANG S J, et al. Genetic model and characteristics of the Cambrian Xiaoerbulake reservoir in Bachu Area, Tarim Basin[J]. Petroleum Geology & Experiment,2017,39(6):797-811.
31 金之钧.从源—盖控烃看塔里木台盆区油气分布规律[J].石油与天然气地质,2014,35(6):763-770.
JIN Z J. A study on the distribution of oil and gas reservoirs controlled by source-cap rock assemblage in unmodified foreland region of Tarim Basin[J]. Oil & Gas Geology,2014,35(6):763-770.
32 林潼,王孝明,张璐,等.盖层厚度对天然气封闭能力的实验分析[J].天然气地球科学,2019,30(3):322-330.
LIN T, WANG X M, ZHANG L, et al. Experimental analysis of the effect of caprock thickness on sealed natural gas[J]. Natural Gas Geoscience,2019,30(3):322-330.
33 林潼,王铜山,潘文庆,等.埋藏过程中膏岩封闭有效性演化特征——以塔里木盆地寒武系深层膏岩盖层为例[J].石油与天然气地质,2021,42(6):1354-1364.
LIN T, WANG T S, PAN W Q, et al. Evaluation of sealing effectiveness of gypsolyte during burial: A case study of the gypsolyte caprock in deep Cambrian, Tarim Basin[J]. Oil & Gas Geology,2021,42(6):1354-1364.
34 张璐,国建英,林潼,等.碳酸盐岩盖层突破压力的影响因素分析[J].石油实验地质,2021,43(3):461-467.
ZHANG L, GUO J Y, LIN T, et al. Influencing factors for breakthrough pressure of carbonate caprocks[J].Petroleum Geo-logy & Experiment,2021,43(3):461-467.
35 顾忆,赵永强,贾存善,等.塔里木盆地阿瓦提坳陷油气资源潜力分析[J].石油实验地质,2012,34(3):257-266.
GU Y, ZHAO Y Q, JIA C S, et al. Analysis of hydrocarbon resource potential in Awati Depression of Tarim Basin[J].Petroleum Geology & Experiment,2012,34(3):257-266.
36 易士威,李明鹏,郭绪杰,等.塔里木盆地寒武系盐下勘探领域的重大突破方向[J].石油学报,2019,40(11):1281-1295.
YI S W, LI M P, GUO X J, et al. Breakthrough direction of Cambrian pre-salt exploration fields in Tarim Basin[J]. Acta Petrologica Sinica,2019,40(11):1281-1295.
37 刘高波,施泽进,佘晓宇.巴楚—麦盖提的区域构造演化与油气分布规律[J].成都理工大学学报(自然科学版),2004,31(2):157-161.
LIU G B, SHI Z J, SHE X Y. Regional tectonic evolution and distribution of Bachu-Markit[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2004,31(2):157-161.
38 刘禹,郑剑锋,曾溅辉,等.塔里木盆地柯坪露头区震旦系微生物自云岩储层微观表征[J].天然气地球科学,2022,33(1):49-62.
LIU Y, ZHENG J F, ZENG J H, et al. Micro-characterization of microbial dolomite reservoir of Upper Sinian Qigeblak Formation in Keping area,Tarim Basin[J]. Natural Gas Geoscience, 2022,33(1):49-62.
[1] 康婷婷, 赵凤全, 房璐, 田浩男, 杨果, 胡方杰, 亢茜, 杨连刚. 滨岸含砾砂岩层序地层、沉积相及对优质储层发育的控制作用[J]. 天然气地球科学, 2022, 33(5): 731-741.
[2] 李王鹏, 王毅, 钱一雄, 邵志兵, 储呈林, 张仲培, 李慧莉, 杨伟利. 塔里木盆地东南缘阿尔金地区首次发现古老烃源岩[J]. 天然气地球科学, 2022, 33(4): 533-547.
[3] 闫磊, 魏国齐, 朱光有, 陈永权, 罗彩明, 杨敏, 王珊, 杜德道. 塔里木盆地震旦系勘探领域分析及区带优选[J]. 天然气地球科学, 2022, 33(4): 548-555.
[4] 朱永进, 郑剑锋, 刘玲利, 冯光, 吴凤, 闫磊, 张天付. 塔里木盆地下寒武统吾松格尔组沉积期岩相古地理与勘探意义[J]. 天然气地球科学, 2022, 33(1): 1-12.
[5] 杨敏, 于鹏, 朱光有, 张罗磊, 闫磊, 赵崇进, 马德波, 陈志勇. 耦合地震约束信息的重磁电联合反演方法及其应用——以塔里木盆地深层地质结构解析为例[J]. 天然气地球科学, 2022, 33(1): 168-180.
[6] 刘禹, 郑剑锋, 曾溅辉, 朱永进. 塔里木盆地柯坪露头区震旦系微生物白云岩储层微观表征[J]. 天然气地球科学, 2022, 33(1): 49-62.
[7] 李亚丁, 陈友莲, 严威, 代瑞雪, 郗诚, 和源. 四川盆地寒武系沧浪铺组沉积演化特征[J]. 天然气地球科学, 2021, 32(9): 1334-1346.
[8] 李谨, 李剑, 王超, 李德江, 韩中喜, 张海祖, 周慧, 卢玉红, 刘满仓. 塔里木盆地库车坳陷致密砂岩气地球化学特征[J]. 天然气地球科学, 2021, 32(8): 1151-1162.
[9] 马安来, 何治亮, 云露, 吴鲜, 李慧莉, 邱楠生, 常健, 林会喜, 曹自成, 朱秀香, 尤东华. 塔里木盆地顺北地区奥陶系超深层天然气地球化学特征及成因[J]. 天然气地球科学, 2021, 32(7): 1047-1060.
[10] 宋腾, 包书景, 陈科, 周志, 李浩涵, 雷玉雪, 段轲. 鄂西北神农架地区下寒武统泥页岩微观储集结构特征及其影响因素[J]. 天然气地球科学, 2021, 32(6): 871-887.
[11] 马安来, 林会喜, 云露, 曹自成, 朱秀香, 李王鹏, 吴鲜. 塔里木盆地顺北地区奥陶系超深层原油金刚烷化合物分布及意义[J]. 天然气地球科学, 2021, 32(3): 334-346.
[12] 朱光有, 张怀顺, 汤顺林, 孙广义, 丁玉祥. 塔里木盆地海相原油汞同位素组成特征[J]. 天然气地球科学, 2021, 32(3): 347-355.
[13] 韩永科, 张志遥, 陈玮岩, 韩剑发, 孙崇浩. 塔里木盆地跃满地区超深油藏成藏地质条件与演化过程[J]. 天然气地球科学, 2021, 32(11): 1634-1645.
[14] 刘春, 陈世加, 赵继龙, 陈戈, 高乔. 库车前陆盆地南部斜坡带中—新生界油气运移输导体系与运聚模拟[J]. 天然气地球科学, 2021, 32(10): 1450-1462.
[15] 罗胜元, 陈孝红, 岳勇, 李培军, 蔡全升, 杨睿之. 中扬子宜昌地区沉积—构造演化与寒武系页岩气富集规律[J]. 天然气地球科学, 2020, 31(8): 1052-1068.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[3] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[4] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[5] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[6] Seewald J S;Benitez-Netson B C;Whelan J K(美国);刘全有(译). 天然气形成与组成的实验和理论因素[J]. 天然气地球科学, 2000, 11(4-5): 30 -44 .
[7] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[8] 马立祥;. 断层封闭性研究在烃类聚集系统分析中的意义[J]. 天然气地球科学, 2000, 11(3): 1 -8 .
[9] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[10] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .