天然气地球科学 ›› 2022, Vol. 33 ›› Issue (9): 1433–1445.doi: 10.11764/j.issn.1672-1926.2022.04.013

• 天然气地质学 • 上一篇    下一篇

鄂尔多斯盆地南部上古生界烃源岩生排烃特征及天然气勘探潜力

张珈毓1,2(),王晓锋1,2(),吴疆3,王庆涛4,孙宜朴3,卢颖忠3,张东东1,2,刘文汇1,2,邱万鎏1,2   

  1. 1.西北大学大陆动力学国家重点实验室,陕西 西安 710069
    2.西北大学地质学系,陕西 西安 710069
    3.中国石化石油勘探开发研究院,北京 100083
    4.广州能源检测研究院,广东 广州 511447
  • 收稿日期:2022-02-25 修回日期:2022-04-19 出版日期:2022-09-10 发布日期:2022-09-09
  • 通讯作者: 王晓锋 E-mail:2248308666@qq.com;wangxf@nwu.edu.cn
  • 作者简介:张珈毓(1997-),男,陕西鄠邑人,硕士研究生,主要从事石油与天然气地球化学研究.E-mail:2248308666@qq.com.
  • 基金资助:
    国家自然科学基金“碳酸盐岩烃源岩中酸溶有机质的赋存状态与形成条件”(41972134);国家自然科学基金“海相源岩烃类排滞控制因素与油气资源分配模式”(41930426)

Hydrocarbon generation and expulsion characteristics and natural gas exploration potential of the Upper Paleozoic in southern Ordos Basin

Jiayu ZHANG1,2(),Xiaofeng WANG1,2(),Jiang WU3,Qingtao WANG4,Yipu SUN3,Yingzhong LU3,Dongdong ZHANG1,2,Wenhui LIU1,2,Wanliu QIU1,2   

  1. 1.State Key Laboratory of Continental Dynamics,Northwest University,Xi'an 710069,China
    2.Department of Geology,Northwestern University,Xi'an 710069,China
    3.Petroleum Exploration and Production Research Institute,SINOPEC,Beijing 100083,China
    4.Guangzhou Institute of Energy Testing,Guangzhou 511447,China
  • Received:2022-02-25 Revised:2022-04-19 Online:2022-09-10 Published:2022-09-09
  • Contact: Xiaofeng WANG E-mail:2248308666@qq.com;wangxf@nwu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(41972134)

摘要:

针对鄂尔多斯盆地南部上古生界不同类型烃源岩生烃贡献不明确的问题,利用生烃动力学研究方法,考虑不同岩性烃源有机质品质差异、岩石物性、吸附能力等因素,评价了鄂尔多斯盆地南部上古生界煤岩和炭质泥岩的生烃特征。综合煤岩、炭质泥岩在南部的厚度分布,绘制了鄂尔多斯盆地南部上古生界煤岩、炭质泥岩生烃强度、排烃强度图。结果显示,鄂尔多斯盆地南部上古生界在煤层分布局限的情况下,炭质泥岩是主力烃源岩,这与前人仅根据地球化学特征参数而得出南部煤岩为主力烃源岩的认识有很大不同。相关认识对今后盆地南部下古生界天然气勘探开发具有重要的指导意义。

关键词: 鄂尔多斯盆地南部, 上古生界, 生排烃强度, 主力烃源岩, 勘探方向

Abstract:

The hydrocarbon production contribution of different types of Upper Palaeozoic hydrocarbon source rocks in the southern Ordos Basin is unclear. Taking into account the differences in organic matter quality, petrophysical properties and sorption capacity of hydrocarbon sources of different lithologies, the hydrocarbon production characteristics of the Upper Palaeozoic coal rocks and carbonaceous mudstones in the southern Ordos Basin were evaluated by using hydrocarbon production kinetic study method. The hydrocarbon production and emission intensity of the Upper Palaeozoic coal rocks and carbonaceous mudstones in the southern Ordos Basin were mapped by integrating the thickness distribution of the coal rocks and carbonaceous mudstones in the southern Ordos Basin. The results show that the charcoal mudstone was the dominant hydrocarbon source rock in the Upper Palaeozoic of the southern Ordos Basin under the restricted distribution of coal seams, which is quite different from the previous understanding that coal rocks in the south were the dominant hydrocarbon source rock based on geochemical characteristics parameters only. The relevant understanding is an important guide for future exploration and development of Lower Palaeozoic gas in the southern part of the basin.

Key words: Southern Ordos Basin, Upper Palaeozoic, Hydrocarbon generation and expulsion intensity, Major source rocks, Exploration direction

中图分类号: 

  • TE122.1+1

图1

鄂尔多斯盆地研究区位置"

图2

研究区太原组(a)、山西组(b)沉积相图(据文献[18],有修改)"

图3

测井曲线解释识别煤岩、炭质泥岩"

图4

鄂尔多斯盆地南部上古生界煤(a)及炭质泥岩(b)厚度等值线图"

表1

模拟样品的地球化学特征参数"

样品编号层位类型RO/%S1/(mg/g)S2/(mg/g)S3/(mg/g)Tmax/℃TOC/%IH/(mg/gTOCIO/(mg/gTOC
19GE-01太原组炭质泥岩0.480.0812.780.394266.5196.626.00
19GE-04太原组0.390.8449.764.3443048.12103.419.02

图5

鄂尔多斯盆地南部炭质泥岩模拟过程中的不同组分产物产率"

图6

鄂尔多斯盆地南部煤岩模拟过程中的不同组分产物产率"

图7

鄂尔多斯盆地南部炭质泥岩和煤在不同温度下天然气产率"

图8

煤(a)和炭质泥岩(b)的甲烷生成活化能分布直方图"

图9

研究区旬探1井埋藏史模拟结果及热演化史恢复(据文献[38])(according to Ref.[38])"

图10

炭质泥岩和煤生烃史"

表2

煤岩和炭质泥岩单位TOC生烃量"

岩性单位TOC生烃量/(mL/gTOC平均TOC/%吸附量/(mL/g)密度/(g/cm3单位质量生烃量/(mL/g岩石
煤岩76.370151.353.4
炭质泥岩92.8932.28.4

表3

煤岩和炭质泥岩单位体积生排烃量"

岩性单位体积生烃量/(mL/cm3单位体积吸附量/(mL/cm3单位体积排烃量/(mL/cm3
煤岩69.419.549.9
炭质泥岩18.46.611.8

表4

煤岩和炭质泥岩生排烃比例"

TOC 比例单位质量生烃量比例单位体积生烃量比例单位体积排烃量比例
煤岩/炭质泥岩7.8∶16.4∶13.8∶14.4∶1

图11

鄂尔多斯盆地南部上古生界煤(a)及炭质泥岩(b)生烃强度等值线"

图12

鄂尔多斯盆地南部上古生界煤(a)及炭质泥岩(b)排烃强度等值线"

图13

鄂尔多斯盆地南部上古生界生烃总强度(a)及排烃总强度(b)等值线"

1 戴金星, 秦胜飞, 胡国艺, 等. 新中国天然气勘探开发70年来的重大进展[J]. 石油勘探与开发, 2019, 46(6): 1037-1046.
DAI J X, QIN S F, HU G Y, et al. Major progress in the natural gas exploration and development in the past seven decades in China[J]. Petroleum Exploration & Development, 2019, 46(6): 1037-1046.
2 屈童, 黄志龙, 王瑞, 等. 全球特提斯域煤系烃源岩发育特征及其控制因素[J]. 煤田地质与勘探, 2021, 49(5): 114-131.
QU T, HUANG Z L, WANG R, et al. Development characteristics and controlling factors of coal measure source rocks in global Tethys region[J]. Coal Geology and Exploration,2021,49(5): 114-131.
3 韩小琴. 鄂尔多斯盆地东南部上古生界山西组烃源岩评价[J]. 石化技术, 2015, 22(9): 200-201, 215.
HAN X Q. Evaluation of source rocks of Upper Paleozoic Shanxi Formation in southeastern Ordos Basin[J]. Petrochemical Technology, 2015, 22(9): 200-201, 215.
4 宋平, 郭明强, 赵靖舟, 等. 鄂尔多斯盆地东缘临兴地区上古生界烃源岩特征及其对天然气成藏的控制作用[J]. 西安石油大学学报(自然科学版), 2019, 34(1): 22-28.
SONG P, GUO M Q, ZHAO J Z, et al. Characteristics of Upper Paleozoic source rocks and their control on natural gas accumulation in Linxing area, eastern Ordos Basin[J]. Journal of Xi 'an Shiyou University (Natural Science Edition), 2019, 34(1): 22-28.
5 杨华, 刘新社. 鄂尔多斯盆地古生界煤成气勘探进展[J]. 石油勘探与开发,2014, 41(2): 129-137.
YANG H,LIU X S. Exploration progress of Paleozoic coal-derived gas in Ordos Basin[J]. Petroleum Exploration & Development, 2014, 41(2): 129-137.
6 邹才能, 陶士振. 中国大气区和大气田的地质特征[J]. 中国科学(D辑:地球科学), 2007,37(S2): 12-28.
ZOU C N, TAO S Z. Geological characteristics of giant gas fields and giant gas fields in China[J]. Science in China (Series D: Earth Sciences), 2007,37(S2): 12-28.
7 戴金星, 邹才能, 陶士振, 等. 中国大气田形成条件和主控因素[J]. 天然气地球科学, 2007,18(4): 473-484.
DAI J X,ZOU C N,TAO S Z,et al. Formation conditions and main controlling factors of giant gas fields in China[J]. Natural Gas Geoscience, 2007,18(4): 473-484.
8 杨智, 何生, 邹才能, 等. 鄂尔多斯盆地北部大牛地气田成岩成藏耦合关系[J]. 石油学报, 2010, 31(3): 373-378,385.
YANG Z,HE S,ZOU C N,et al. Coupling relationship between diagenesis and reservoir formation in Daniudi Gas Field, northern Ordos Basin[J]. Acta Petrolei Sinica, 2010, 31(3): 373-378,385.
9 蒙晓灵, 张宏波, 冯强汉, 等. 鄂尔多斯盆地神木气田二叠系太原组天然气成藏条件[J]. 石油与天然气地质, 2013, 34(1): 37-41.
MENG X L, ZHANG H B, FENG Q H, et al. Gas accumulation conditions of Permian Taiyuan Formation in Shenmu Gas Field,Ordos Basin[J]. Oil & Gas Geology,2013,34(1): 37-41.
10 韩会平, 武春英, 季海琨, 等. 苏里格南部地区上古生界天然气成藏条件及勘探潜力[J]. 油气地质与采收率, 2014, 21(4): 33-36,113.
HAN H P, WU C Y, JI H K, et al. Gas accumulation conditions and exploration potential of Upper Paleozoic in southern Sulige area[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(4): 33-36,113.
11 刘玲, 王琳霖, 吴疆, 等. 鄂尔多斯盆地南部彬长区块上石盒子组7段储层识别与预测[J]. 石油与天然气地质, 2021, 42(5): 1124-1135.
LIU L, WANG L L, WU J, et al. Reservoir identification and prediction of 7th Member of Upper Shihezi Formation in Binchang block, southern Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1124-1135.
12 WANG Q T, LIU W H, MENG P L, et al. Assessment the gas potential of coal-bearing mudstones from Upper Paleozoic in Ordos Basin via gold-tube pyrolysis[J]. Journal of Natural Gas Science and Engineering, 2021, 90(6):103895.
13 顾超, 曹建康, 庄一鹏, 等. 鄂尔多斯盆地旬宜区块上古生界烃源岩地球化学特征[J]. 西北地质, 2020, 53(2): 263-269.
GU C, CAO J K, ZHUANG Y P, et al. Geochemical characteristics of Upper Paleozoic source rocks in Shunyi block, Ordos Basin[J]. Northwest Geology, 2020, 53(2): 263-269.
14 齐荣, 何发岐, 王付斌, 等. 鄂尔多斯盆地南部长探1井上古生界勘探突破及意义[J]. 中国石油勘探, 2021, 26(3): 68-78.
QI R, HE F Q, WANG F B, et al. Exploration breakthrough of Upper Paleozoic in Well Changtan 1 in southern Ordos Basin and its significance[J].China Petroleum Exploration,2021, 26(3): 68-78.
15 曹跃, 银晓, 赵谦平, 等. 鄂尔多斯盆地南部延长探区上古生界烃源岩特征与勘探方向[J]. 中国石油勘探, 2015, 20(3): 13-21.
CAO Y, YIN X, ZHAO Q P, et al. Characteristics and exploration direction of Upper Paleozoic source rocks in Yanchang exploration area,southern Ordos Basin[J].China Petroleum Ex-ploration, 2015, 20(3): 13-21.
16 武洪涛, 孙妹娴. 鄂尔多斯盆地构造演化浅述[J]. 科技资讯, 2019, 17(7): 78-79,81.
WU H T, SUN M X. Brief description of tectonic evolution of Ordos Basin[J]. Science and Technology Information, 2019, 17(7): 78-79,81.
17 彭胜琴. 杭锦旗地区中晚元古界油气地质特征与勘探潜力分析[D]. 西安:西北大学, 2009.
PENG S Q. Analysis on Petroleum Geological Characteristics and Exploration Potential of Middle and Late Proterozoic in Hangjinqi Area[D]. Xi′an:Northwest University, 2009.
18 李文厚, 张倩, 李克永, 等. 鄂尔多斯盆地及周缘地区晚古生代沉积演化[J]. 古地理学报, 2021, 23(1): 39-52.
LI W H, ZHANG Q, LI K Y, et al. Sedimentary evolution of Late Paleozoic in Ordos Basin and its surrounding areas[J]. Jo-urnal of Palaeogeography, 2021, 23(1): 39-52.
19 姚泾利, 胡新友, 范立勇, 等. 鄂尔多斯盆地天然气地质条件资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1465-1474.
YAO J L, HU X Y, FAN L Y, et al. Natural gas geology, resource potential and exploration direction in Ordos Basin[J]. Natural Gas Geoscience, 2018, 29(10): 1465-1474.
20 杨伟利, 王毅, 孙宜朴, 等. 鄂尔多斯盆地南部上古生界天然气勘探潜力[J]. 天然气工业, 2009, 29(12): 13-16, 136-137.
YANG W L, WANG Y, SUN Y P, et al. Natural gas exploration potential of the Upper Paleozoic in the southern Ordos Basin[J].Natural Gas Industry,2009,29(12):13-16,136-137.
21 付金华, 董国栋, 周新平, 等. 鄂尔多斯盆地油气地质研究进展与勘探技术[J]. 中国石油勘探,2021,26(3):19-40.
FU J H, DONG G D, ZHOU X P, et al. Research progress and exploration technology of petroleum geology in Ordos Basin[J]. China Petroleum Exploration, 2021, 26(3): 19-40.
22 苗建宇, 赵建设, 李文厚, 等. 鄂尔多斯盆地南部烃源岩沉积环境研究[J]. 西北大学学报(自然科学版),2005,35(6): 771-776.
MIAO J Y, ZHAO J S, LI W H, et al. Study on sedimentary environment of source rocks in southern Ordos Basin[J]. Journal of Northwest University (Natural Science Edition),2005,35(6): 771-776.
23 李玉宏, 李文厚, 张倩, 等. 鄂尔多斯盆地及周缘沉积相图册[M]. 北京:地质出版社,2020.
LI Y H, LI W H, ZHANG Q, et al. Atlas of Sedimentary Facies in Ordos Basin and Its Periphery[M]. Beijing: Geological Publishing House,2020.
24 胡维强, 赵靖舟, 李军, 等. 鄂尔多斯盆地西南部上古生界烃源岩特征及其对天然气藏形成与分布的控制作用[J]. 天然气地球科学, 2015, 26(6): 1068-1075.
HU W Q, ZHAO J Z, LI J, et al. Characteristics of Upper Paleozoic source rocks and their control on the formation and distribution of natural gas reservoirs in southwestern Ordos Basin[J]. Natural Gas Geoscience, 2015, 26(6): 1068-1075.
25 黄第藩, 熊传武. 含煤地层中石油的生成、运移和生油潜力评价[J]. 勘探家, 1996, 1(1): 6-11.
HUANG D F, XIONG C W. Petroleum generation, migration and potential evaluation of oil generation in coal-bearing strata[J]. Explorationist,1996,1(1):6-11.
26 陈建平, 赵长毅, 何忠华. 煤系有机质生烃潜力评价标准探讨[J]. 石油勘探与开发, 1997, 24(1):1-5.
CHEN J P, ZHAO C Y, HE Z H. Evaluation criteria for hydrocarbon generation potential of organic matter in coal measures[J].Petroleum Exploration & Development,1997,24(1): 1-5.
27 许怀先, 陈丽华, 万玉金, 等. 石油地质实验测试技术与应用[M]. 北京: 石油工业出版社, 2001.
XU H X, CHEN L H, WAN Y J, et al. Petroleum Geology Experiment Testing Technology and Application[M].Beijing: Petroleum Industry Press, 2001.
28 卢双舫, 张敏. 油气地球化学[M]. 北京:石油工业出版社, 2008: 201-209.
LU S F, ZHANG M. Petroleum Geochemistry[M]. Beijing: Petroleum Industry Press, 2008: 201-209.
29 刘金钟, 唐永春. 用干酪根生烃动力学方法预测甲烷生成量之一例[J]. 科学通报, 1998,43(10): 1187-1191.
LIU J Z, TANG Y C. An example of predicting methane production by kerogen hydrocarbon-generation kinetics[J].Chinese Science Bulletin, 1998,43(10): 1187-1191.
30 UNGERER P, PELET R. Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins[J]. Nature, 1987,327: 52-54.
31 WAPLES D W. The kinetics of in-reservoir oil destruction and gas formation: Constraints from experimental and empirical data,and from thermodynamics[J]. Organic Geochemistry,2000,31: 553-575.
32 LEWAN M D, RUBLE T E. Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis[J].Organic Geochemistry,2002,33(12):1457-1475.
33 XU H, DING X, LUO Z, et al. Confined pyrolysis for simulating hydrocarbon generation from Jurassic coaly source rocks in the Junggar Basin,northwest China[J]. Energy Fuels,2017,31:73-94.
34 BEHAR F, KRESSMANN S, RUDKIEWICZ J L, et al. Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking[J]. Organic Geochemistry, 1992,19, 173-189.
35 HILL R J, TANG Y C, KAPLAN I R. Insights into oil cracking based on laboratory experiments[J]. Organic Geochemistry, 2003,34(12):1651-1672.
36 SCHENK H J, DIECKMANN V. Prediction of petroleum formation: The influence of laboratory heating rates on kinetic parameters and geological extrapolations[J]. Marine and Petrole-um Geology,2004.21(1):79-95.
37 PETERS K E, WALTERS C C, MANKIEWICZ P J. Evaluation of kinetic uncertainty in numerical models of petroleum generation[J].AAPG Bulletin, 2006,90(3): 387-403.
38 ZHAO Z, PANG X, JIANG F, et al. Hydrocarbon generation from confined pyrolysis of Lower Permian Shanxi Formation coal and coal measure mudstone in the Shenfu area, northeastern Ordos Basin,China[J].Marine and Petroleum Geology,2018,97,355-369.
39 刘金水, 李树霞, 秦兰芝, 等. 东海盆地西湖凹陷古近系煤的生烃动力学[J]. 石油学报, 2020, 41(10): 1174-1187,1218.
LIU J S, LI S X, QIN L Z, et al. Hydrocarbon generation kinetics of paleogene coals in Xihu Sag, East China Sea Basin[J]. Acta Petrolei Sinica, 2020, 41(10): 1174-1187,1218.
40 王晖, 张磊, 石军太, 等. 鄂尔多斯盆地东南部山西组泥页岩生烃热模拟实验[J]. 天然气地球科学, 2017, 28(7): 1078-1084.
WANG H,ZHANG L,SHI J T,et al. Thermal simulation experiment on hydrocarbon generation of shales in Shanxi Formation,southeastern Ordos Basin[J].Natural Gas Geoscience,2017, 28(7): 1078-1084.
41 付少英, 彭平安, 刘金钟, 等. 鄂尔多斯盆地上古生界煤的生烃动力学研究[J]. 中国科学(D辑: 地球科学), 2002,32(10): 812-818.
FU S Y, PENG P A, LIU J Z, et al. Hydrocarbon generation kinetics of Upper Paleozoic coal in Ordos Basin[J]. Science in China (Series D: Earth Sciences), 2002,32(10): 812-818.
42 黄彩霞, 张枝焕, 李宇翔, 等. 鄂尔多斯盆地南部地区延长组烃源岩生烃动力学研究及模拟结果分析[J]. 石油天然气学报,2013,35(8):21-27,5.
HUANG C X, ZHANG Z H, LI Y X, et al. Study on hydrocarbon generation kinetics and simulation results of Yanchang Formation source rocks in southern Ordos Basin[J]. Journal of Oil and Gas Technology, 2013, 35(8): 21-27,5.
43 祁凯. 鄂尔多斯盆地中—新生代热体制及岩石圈动力演化初探[D]. 西安:西北大学, 2018.
QI K. Mesozoic-Cenozoic Thermal Regime and Dynamic Evolution of Lithosphere in Ordos Basin[D].Xi´an:Northwest Uni-versity, 2018.
44 TIAN H,XIAO X M,WILKINS R W T,et al. Gas sources of the YN2 gas pool in the Tarim Basin-Evidence from gas genera-tion and methane carbon isotope fractionation kinetics of source rocks and crude oils[J].Marine and Petroleum Geology,2007. 24(1):29-41
45 WANG Q, ZOU H, HAO F, et al. Modeling hydrocarbon generation from the Paleogene source rocks in Liaodong Bay, Bohai Sea: A study on gas potential of oil-prone source rocks[J]. Organic Geochemistry, 2014,76(11):204-219.
46 杨华, 付金华, 刘新社, 等. 鄂尔多斯盆地上古生界致密气成藏条件与勘探开发[J]. 石油勘探与开发, 2012, 39(3): 295-303.
YANG H, FU J H, LIU X S, et al. Accumulation conditions and exploration and development of tight gas in the Upper Paleozoic of the Ordos Basin[J]. Petroleum Exploration & Development, 2012, 39(3): 295-303.
47 任战利, 于强, 崔军平, 等. 鄂尔多斯盆地热演化史及其对油气的控制作用[J]. 地学前缘, 2017, 24(3): 137-148.
REN Z L, YU Q, CUI J P, et al. Thermal evolution of Ordos Basin and its controlling effect on oil and gas[J]. Earth Science Frontiers,2017,24(3):137-148.
48 ZHU C J, REN J, WAN J, et al. Methane adsorption on coals with different coal rank under elevated temperature and pressure[J]. Fuel, 2019,254:115686.
49 GAI H F, LI T F, WANG X, et al. Methane adsorption characteristics of overmature Lower Cambrian shales of deepwater shelf facies in Southwest China[J]. Marine and Petroleum Geology, 2020,120(10):104565.
50 赵晓东. 鄂尔多斯盆地东南部上古生界流体动力演化及对下古生界成藏的影响[D]. 西安:西北大学, 2014.
ZHAO X D. Fluid Dynamic Evolution of Upper Paleozoic and its Influence on Reservoir Formation of Lower Paleozoic in Southeastern Ordos Basin[D]. Xi´an: Northwest University, 2014.
51 王倩. 鄂尔多斯盆地西南部上古生界天然气成藏动力研究[D]. 西安:西安石油大学, 2015.
WANG Q. Dynamics of Gas Accumulation in the Upper Paleozoic in Southwestern Ordos Basin[D].Xi´an:Xi 'an Shiyou Uni-versity, 2015.
52 胡维强. 鄂尔多斯盆地西南部上古生界天然气成藏地球化学特征研究[D]. 西安:西安石油大学, 2015.
HU W Q. Geochemical Characteristics of Gas Accumulation in the Upper Paleozoic in Southwestern Ordos Basin[D]. Xi 'an :Xi 'an Shiyou University, 2015.
53 史梦琪. 鄂尔多斯盆地南部镇—泾地区上古生界天然气成藏模式[D]. 北京:中国石油大学(北京), 2020.
SHI M Q. Gas Accumulation Model of Upper Paleozoic in Zhenjing Area, Southern Ordos Basin[D]. Beijing:China University of Petroleum (Beijing), 2020.
54 陈新,王文,樊靖.鄂尔多斯盆地西缘南段上古生界烃源岩综合评价[J]. 辽宁化工, 2016, 45(10):1287-1289.
CHEN X,WANG W,FAN J. Comprehensive evaluation of Upper Paleozoic source rocks in southern section of western margin of Ordos Basin[J]. Liaoning Chemical Industry, 2016, 45(10): 1287-1289.
55 姚海鹏. 鄂尔多斯盆地北部晚古生代煤系非常规天然气耦合成藏机理研究[D]. 北京:中国矿业大学(北京), 2017.
YAO H P. Coupling Accumulation Mechanism of Unconventional Natural Gas in Late Paleozoic Coal Measures in Northern Ordos Basin[D]. Beijing: China University of Mining and Technology, 2017.
56 朱景宇. 鄂尔多斯盆地北部上古生界天然气成藏富集条件分析[D]. 北京:中国石油大学(北京), 2016.
ZHU J Y. Analysis on Accumulation and Enrichment Conditions of Natural Gas in the Upper Paleozoic in Northern Ordos Basin[D]. Beijing: China University of Petroleum(Beijing),2016.
[1] 李勇, 路俊刚, 刘向君, 王剑, 陈世加, 何清波. 准噶尔盆地沙湾凹陷烃源岩地球化学特征及天然气勘探方向[J]. 天然气地球科学, 2022, 33(8): 1319-1331.
[2] 郝爱胜, 李剑, 国建英, 吴浩, 冉启贵, 李志生, 齐雪宁, 张璐, 王晓波. 吐哈盆地下侏罗统致密砂岩气藏特征与勘探方向[J]. 天然气地球科学, 2021, 32(8): 1212-1222.
[3] 李松, 刘玲, 吴疆, 王琳霖, 张智礼. 鄂尔多斯盆地南部山西组—下石盒子组致密砂岩成岩演化[J]. 天然气地球科学, 2021, 32(1): 47-56.
[4] 吴小奇, 陈迎宾, 翟常博, 周小进, 刘文汇, 杨俊, 宋晓波. 四川盆地中三叠统雷口坡组天然气来源及勘探方向[J]. 天然气地球科学, 2020, 31(9): 1204-1215.
[5] 宋昆鹏,罗静兰,刘新社,侯云东,盛伟琰,曹江骏,毛倩茹. 鄂尔多斯盆地西南部上古生界致密砂岩中碳酸盐胶结物特征及成因[J]. 天然气地球科学, 2020, 31(11): 1562-1573.
[6] 杨威, 魏国齐, 李德江, 刘满仓, 谢武仁, 金惠, 沈珏红, 郝翠果, 王小丹. 四川盆地志留系小河坝组砂岩油气地质特征与勘探方向[J]. 天然气地球科学, 2020, 31(1): 1-12.
[7] 崔景伟, 朱如凯, 李森, 齐亚林, 时晓章, 毛治国, . 坳陷湖盆烃源岩发育样式及其对石油聚集的控制——以鄂尔多斯盆地三叠系延长组长7油层组为例[J]. 天然气地球科学, 2019, 30(7): 982-996.
[8] 刘晓鹏, 赵会涛, 闫小雄, 贾亚妮, . 克拉通盆地致密气成藏地质特征与勘探目标优选——以鄂尔多斯盆地上古生界为例[J]. 天然气地球科学, 2019, 30(3): 331-343.
[9] 陈永权, 严威, 韩长伟, 闫磊, 冉启贵, 亢茜, 何皓, 马源. 塔里木盆地寒武纪/前寒武纪构造—沉积转换及其勘探意义[J]. 天然气地球科学, 2019, 30(1): 39-50.
[10] 杨超,贺永红,马芳侠,雷裕红,陈义国. 鄂尔多斯盆地南部三叠系延长组有机流体活动期次划分[J]. 天然气地球科学, 2018, 29(5): 655-664.
[11] 葛岩,朱光辉,万欢,潘新志,黄志龙. 鄂尔多斯盆地东缘紫金山侵入构造对上古生界致密砂岩气藏形成和分布的影响[J]. 天然气地球科学, 2018, 29(4): 491-499.
[12] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[13] 王延山, 胡英杰, 黄双泉, 康武江, 陈永成. 渤海湾盆地辽河坳陷天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1422-1432.
[14] 姚泾利, 胡新友, 范立勇, 刘新社, 季海锟, . 鄂尔多斯盆地天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1465-1474.
[15] 朱华, 杨光, 苑保国, 应丹琳, 戴鑫, 周红飞, 徐世琦, 谈健康. 四川盆地常规天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1475-1485.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[3] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[4] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[5] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[6] Seewald J S;Benitez-Netson B C;Whelan J K(美国);刘全有(译). 天然气形成与组成的实验和理论因素[J]. 天然气地球科学, 2000, 11(4-5): 30 -44 .
[7] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[8] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[9] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[10] 廖成君. VSP技术在锦612复杂断块油藏开发部署研究中的应用[J]. 天然气地球科学, 2005, 16(1): 117 -122 .