天然气地球科学 ›› 2022, Vol. 33 ›› Issue (9): 1421–1432.doi: 10.11764/j.issn.1672-1926.2022.04.008

• 天然气地质学 • 上一篇    下一篇

鄂尔多斯盆地临兴地区分流河道砂体叠置样式精细刻画及致密气产能差异分析

王波(),齐宇,孙乐,李文兰   

  1. 中海油研究总院,北京 100028
  • 收稿日期:2021-04-12 修回日期:2022-03-23 出版日期:2022-09-10 发布日期:2022-09-09
  • 作者简介:王波(1991-),男,湖北潜江人,工程师,主要从事沉积学、层序地层学及储层预测研究. E-mail:wangbo56@cnooc.com.cn.
  • 基金资助:
    中海石油(中国)有限公司综合科研项目

The detailed description of superposed patterns and productivity difference analysis of tight gas distributary channel sandbody of Linxing area in Ordos Basin

Bo WANG(),Yu QI,Le SUN,Wenlan LI   

  1. CNOOC Research Institute Ltd. ,Beijing 100028,China
  • Received:2021-04-12 Revised:2022-03-23 Online:2022-09-10 Published:2022-09-09
  • Supported by:
    The Scientific Research Project of CNOOC

摘要:

鄂尔多斯盆地临兴地区X区块石盒子组主要发育辫状河三角洲平原亚相沉积,分流河道微相致密储层蕴含着丰富的天然气资源,是目前研究区开发的热点。研究区分流河道砂体横向摆动快、沉积厚度薄、岩性及物性横向变化明显,因此,开展分流河道砂体精细刻画及产能差异分析是井位部署的重要依据。基于岩心、薄片、测井等多种资料,建立了分流河道内部不同叠置样式砂体识别图版,形成3种砂体叠置样式的分类体系:单期孤立型、多期叠置型以及多期互层型。并从地震正演入手,剖析了不同叠置样式砂体的地震响应特征,其中单期孤立型砂体平面规模较小,地震上表现为中低频—透镜状强反射特征;多期叠置型以及多期互层型砂体由于单期砂体横向迁移、垂向叠置,平面规模较大,前者地震相表现为高连续—中低频—强反射特征,后者地震相表现为中低连续—中高频—中弱反射特征;最后根据已钻井测井解释资料,综合对比了不同叠置样式砂体的累计气层厚度、孔隙度、渗透率、含气饱和度以及测试无阻流量等参数,发现单期孤立型砂体顶底发育厚层泥岩段,砂体封闭条件好且内部隔夹层不发育,含气饱和度高,测试后多具自然产能,产水量小,潜力巨大。

关键词: 临兴地区X区块, 分流河道, 砂体叠置样式, 地震相, 单期孤立型砂体

Abstract:

It is totally known that the Shihezi Formation of Linxing X block in Ordos Basin mainly develops braided river delta plain subfacies. Distributary channel microfacies tight reservoir contains rich natural gas resources, which is the focus of development in the work area at present. The channel sands are complex in vertical superimposition, thin sedimentary thickness, and obvious lateral changes in lithology and physical properties. Therefore the detailed description of superposed patterns and productivity difference analysis of tight gas distributary channel sandbody are very important. Based on the core, thin section, well-logging and other data of distributary channel sand bodies of the Linxing X block in Ordos Basin, this paper summarizes channel types and superposed patterns of the distributary channels in the braided river delta plain.Three types of sand body classification systems are established, including single-phase isolated type, multiphase superimposed type and multiphase interbedded type. The seismic response characteristics of different sand body types are analyzed by seismic forward modeling method. The plane scale of single-phase isolated sand body is small, and the seismic facies are characterized by low-medium frequency high amplitude reflection. The plane scale of multiphase superimposed sand body is large, and the seismic facies are characterized by low-medium frequency, high continuity and high amplitude reflection. The seismic facies of multiphase interbedded sand bodies are characterized by low-medium continuous medium-high frequency and low-medium amplitude reflection. Finally, according to the well logging interpretation data, the parameters such as cumulative gas reservoir thickness, porosity, permeability, gas saturation and open flow are comprehensively compared. It is found that the single-phase isolated sand body has good hydrocarbon preservation conditions, i.e., good reservoir physical property, high gas saturation, high producing gas and low producing water, featuring enormous development potential.

Key words: Linxing X block, Distributary channel, The superimposition of sand body, Seismic facies, Single-phase isolated sand body

中图分类号: 

  • TE132.1

图1

临兴地区X区块地理位置(a)及中二叠统综合柱状图(b)"

图2

不同叠置样式分流河道砂体分类"

图3

不同叠置样式砂体正演模型及地震响应特征"

表1

正演模型参数"

主频/Hz砂岩速度/(m/s)砂岩密度/(g/cm3泥岩速度/(m/s)泥岩密度/(g/cm3调谐厚度/m
354 4002.53 8002.627.5

表2

正演模型砂泥岩厚度"

纯泥岩单期孤立型多期叠置型多期互层型
砂岩1厚度/m1055
泥岩1厚度/m16
砂岩2厚度/m126
泥岩2厚度/m15
砂岩3厚度/m85
累计砂厚/m102516

图4

不同叠置样式砂体楔形正演模型"

图5

不同叠置样式砂体厚度与最大振幅关系"

图6

不同叠置样式砂体地震响应及平面展布特征"

表3

不同叠置样式砂体地质参数统计"

砂体类型宽度/km长度/km面积/km2
单期孤立型(样本数34)0.32~0.541.33~3.280.52~1.79
多期叠置型(样本数61)0.55~1.522.21~5.262.05~6.10
多期互层型(样本数26)0.61~1.491.54~4.331.58~5.23

图7

临兴X区块石盒子组不同层段砂体平面雕刻图"

表4

不同叠置样式砂体地层特征系数及测试产能统计"

砂体类型气层厚度/m孔隙度/%渗透率/(10-3 μm2含气饱和度/%无阻流量/(104 m3/d)产水量/(m3/d)
单期孤立型5.6~11.87.6(30)10.4~15.112.5(30)0.8~6.62.7(30)56.5~68.259.8(30)0.7~50.212.4(30)0~5.40.8(30)
多期叠置型3.9~17.09.8(50)9.9~15.211.9(50)0.5~5.21.5(50)50.1~62.955.3(50)0.4~50.34.6(50)0~56.85.6(50)
多期互层型2.7~9.36.6(13)9.3~13.911.7(13)0.6~3.11.4(13)50.9~58.754.7(13)0.4~5.51.6(13)0~13.13.6(13)

图8

不同叠置样式砂体气层厚度(a)及气砂比(b)分布区间柱状图"

图9

不同叠置样式砂体物性与米无阻流量散点关系图米无阻流量=测试无阻流量/气层累计厚度"

图10

不同叠置样式砂体物性与含气饱和度散点关系图"

图11

不同叠置样式砂体测试产水井占比饼状图"

图12

X1-54-5H井单期孤立型砂体钻探实例"

1 陈孟晋, 汪泽成, 郭彦如, 等. 鄂尔多斯盆地南部晚古生代沉积特征与天然气勘探潜力[J]. 石油勘探与开发, 2006, 33(1): 1-5.
CHEN M J, WANG Z C, GUO Y R, et al. Late Paleozoic sedimentary systems and gas potential in the South Ordos Basin[J]. Petroleum Exploration & Development, 2006, 33(1): 1-5.
2 沈玉林, 郭英海, 李壮福, 等. 鄂尔多斯盆地苏里格地区二叠系山西组及下石盒子组盒八段沉积相[J]. 古地理学报,2006, 8(1): 53-62.
SHEN Y L, GUO Y H, LI Z F, et al. Sedimentary facies of the Shanxi Formation and Member 8 of Xiashihezi Formation of Permian in Suligemiao area, Ordos Basin[J]. Journal of Palaeogeography, 2006, 8(1): 53-62.
3 冯小哲, 祝海华. 鄂尔多斯盆地苏里格地区下石盒子组致密砂岩储层微观孔隙结构及分形特征[J]. 地质科技情报, 2019, 38(3): 147-156.
FENG X Z, ZHU H H. Micro-pore structure and fractal characteristics of the Xiashihezi Formation tight sandstone reservoirs in Sulige area,Ordos Basin[J]. Geological Science and Te-chnology Information, 2019, 38(3): 147-156.
4 陈诚, 齐宇, 喻梓靓, 等. 浅水三角洲河道砂体叠置关系的地震识别——以鄂尔多斯盆地东缘临兴S区为例[J]. 天然气地球科学, 2021, 32(5): 772-779.
CHEN C, QI Y, YU Z L, et al. Seismic identification of superposition relationship of the shallow water delta channel sandbodies: Case study of Linxing S area in eastern Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(5): 772-779.
5 田永净, 吴和源, 姜雄鹰, 等 . 鄂尔多斯盆地东缘临兴地区上石盒子组成藏特征[J]. 天然气地球科学, 2021, 32(11): 1664-1672.
TIAN Y J, WU H Y, JIANG X Y, et al. Accumulation characteristics research of Shangshihezi Formation in Linxing block, eastern margin of the Ordos Basin, China[J]. Natural Gas Geoscience, 2021, 32(11): 1664-1672.
6 ZOU C N, ZHU R K, LIU K Y, et al. Tight gas sandstone reservoirs in China: Characteristics and recognition criteria[J]. Journal of Petroleum Science and Engineering,2012,(88-89): 82-91.
7 JIANG F, PANG X, GUO F, et al. Critical conditions for natural gas charging and delineation of effective gas source rocks for tight sandstone reservoirs[J]. Geological Journal, 2016, 51(1): 113-124.
8 李洁, 陈洪德, 侯中健, 等. 鄂尔多斯盆地东北部下石盒子组盒8段辫状河三角洲沉积特征[J]. 沉积与特提斯地质, 2008, 28(1): 27-32.
LI J, CHEN H D, HOU Z J, et al. Sedimentary characteristics of the braided deltas in the eighth Member of the Lower Shihezi Formation in the northeastern part of the Ordos Basin[J]. Sedimentary Geology and Tethyan Geology, 2008, 28(1): 27-32.
9 陈晓智, 庞雄奇, 邵新荷, 等. 鄂尔多斯盆地临兴A地区下石盒子组致密砂岩气成藏条件[J]. 地质科技情报, 2018, 37(1): 169-176.
CHEN X Z, PANG X Q, SHAO X H, et al. Accumulation conditions of tight sandstone gas in the Lower Shihezi Formation in Linxing A area, Ordos Basin[J]. Geological Science and Technology Information, 2018, 37(1): 169-176.
10 陈安清, 陈洪德, 林良彪, 等. 鄂尔多斯盆地东北部石盒子组层序充填样式及过程分析[J]. 中国地质, 2009, 15(5): 1046-1054.
CHEN A Q, CHEN H D, LIN L B, et al. An analysis of sequence filling types and process of Shihezi Formation in northeast Ordos Basin[J]. Geology in China, 2009, 15(5): 1046-1054.
11 吴胜和, 徐振华, 刘钊, 等. 河控浅水三角洲沉积构型[J]. 古地理学报, 2019, 21(2): 202-215.
WU S H, XU Z H, LIU Z, et al. Depositional architecture of fluvial-dominated shoal water delta[J]. Journal of Palaeogeography, 2019, 21(2): 202-215.
12 刘君龙, 孙冬胜, 纪友亮, 等. 川西晚侏罗世前陆盆地浅水三角洲砂体分布特征与叠置模式[J]. 石油与天然气地质, 2018, 39(6): 1164-1178.
LIU J L, SUN D S, JI Y L, et al. Distribution characteristics and superimposition pattern of the Late Jurassic shallow water delta sand body in the foreland basin of western Sichuan Depression[J]. Oil & Gas Geology, 2018, 39(6): 1164-1178.
13 赵云翔, 陈景山, 王建峰, 等. 鄂尔多斯盆地延长组长9砂体的垂向结构及主控因素分析[J]. 沉积学报, 2013, 31(1): 77-88.
ZHAO Y X, CHEN J S, WANG J F, et al. Vertical structure and dominating factors of Chang 9 sand body from Yanchang Formation in Ordos Basin[J]. Acta Sedimentologica Sinica, 2013, 31(1): 77-88.
14 胡光义, 陈飞, 范廷恩, 等. 渤海海域S油田新近系明化镇组河流相复合砂体叠置样式分析[J]. 沉积学报, 2014, 32(3): 586-592.
HU G Y, CHEN F, FAN T E, et al. Analysis of fluvial facies compound sandbody architecture of the Neogene Minghuazhen Formation of soil field in the Bohai Bay[J]. Acta Sedimentologica Sinica, 2014, 32(3): 586-592.
15 胡光义, 范廷恩, 陈飞, 等. 从储层构型到“地震构型相”: 一种河流相高精度概念模型的表征方法[J]. 地质学报, 2017, 91(2): 465-478.
HU G Y, FAN T E, CHEN F, et al. From reservoir architecture to seismic architecture facies: Characteristic method of a high-resolution fluvial facies model[J]. Acta Geologica Sinica, 2017, 91(2): 465-478.
16 杨希濮, 张栋, 陈筱, 等. 基于地震属性的深水水道型浊积储层砂体展布预测[J]. 海洋地质前沿, 2021, 37(10): 70-77.
YANG X P, ZHANG D, CHEN X, et al. Prediction of sand bodies in deep-water channel turbidite reservoir with seismic attributes[J]. Marine Geology Frontiers, 2021, 37(10): 70-77.
17 赵翰卿, 付志国, 吕晓光, 等. 大型河流—三角洲沉积储层精细描述方法[J]. 石油学报, 2000, 21(4): 109-113.
ZHAO H Q, FU Z G, LÜ X G, et al. Methods for detailed description of lager fluvial-delta depositional reservoir[J]. Acta Petrolei Sinica, 2000, 21(4): 109-113.
18 刘金连, 张建宁. 济阳探区单一河道砂体边界地质建模及其地震正演响应特征分析[J]. 石油物探, 2010, 49(4): 344-350.
LIU J L, ZHANG J N. Geological modeling and seismic forward response characteristics analysis of single channel sand body boundary in Jiyang prospecting area[J].Geophysical Prospecting for Petroleum, 2010, 49(4): 344-350.
19 岳大力, 吴胜和, 谭河清, 等. 曲流河古河道储层构型精细解剖: 以孤东油田七区西馆陶组为例[J]. 地学前缘, 2008, 15(1): 101-109.
YUE D L, WU S H, TAN H Q, et al. An anatomy of paleo-channel reservoir architecture of meandering river reservoir: A case study of Guantao Formation,the west 7th block of Gu-dong Oilfield[J]. Earth Science Frontiers, 2008, 15(1): 101-109.
20 于兴河. 油田开发中后期储层面临的问题与基于沉积成因的地质表征方法[J]. 地学前缘, 2012, 19(2): 1-14.
YU X H. Existing problem sand sedimentogenesis base methods of reservoir characterization during the middle and later periods of oilfield development[J].Earth Science Frontiers,2012, 19(2): 1-14.
21 封从军, 鲍志东, 代春明, 等. 三角洲前缘水下分流河道单砂体叠置机理及对剩余油的控制——以扶余油田 J19区块泉头组四段为例[J]. 石油与天然气地质, 2015, 36(1): 128-135.
FENG C J, BAO Z D, DAI C M, et al. Superimposition patterns of underwater distributary channel sands in deltaic front and its control on remaining oil distribution:A case study from K1 q 4 in J19 block,Fuyu Oilfield[J]. Oil & Gas Geology,2015, 36(1): 128-135.
[1] 王学勇, 卞保力, 刘海磊, 蒋中发, 周路, 朱永才. 准噶尔盆地玛湖地区二叠系风城组地震相特征及沉积相分布[J]. 天然气地球科学, 2022, 33(5): 693-707.
[2] 苏洲, 刘永福, 韩剑发, 杨淑雯, 刘博, 赖鹏, 彭鹏, 张慧芳, 易珍丽. 相控约束下的超深薄层砂体预测技术在塔北隆起玉东区块中的应用[J]. 天然气地球科学, 2020, 31(2): 295-306.
[3] 万琼华,刘伟新,王华,衡立群,王宇辰,高永明. 珠江口盆地陆丰凹陷辫状河三角洲前缘储层沉积构型模式[J]. 天然气地球科学, 2019, 30(12): 1732-1742.
[4] 王俊, 高银山, 王洪君, 王新星, 鲍志东, 张红静. 基于正演模拟的水下分流复合河道内单一河道划分[J]. 天然气地球科学, 2018, 29(9): 1310-1322.
[5] 金丽娜,于兴河,董亦思,单新,何玉林,林霖. 琼东南盆地水合物探区第四系深水沉积体系演化及与BSR关系[J]. 天然气地球科学, 2018, 29(5): 644-654.
[6] 张艳,张春雷,高世臣. 基于SOM和HSV染色技术的致密砂岩储层地震相分析[J]. 天然气地球科学, 2018, 29(2): 259-267.
[7] 杨鑫,李慧莉,岳勇,刘士林,李建交,熊平. 塔里木盆地震旦纪末地层—地貌格架与寒武纪初期烃源岩发育模式[J]. 天然气地球科学, 2017, 28(2): 189-198.
[8] 殷杰,王权. 利用测井和地震信息识别和预测优质烃源岩——以渤海湾盆地饶阳凹陷沙一段为例[J]. 天然气地球科学, 2017, 28(11): 1761-1770.
[9] 石新朴, 胡清雄, 解志薇, 杨朝栋, 周隶华, 孙德强, 吕灿, 贾智彬, 赵振. 火山岩岩性、岩相识别方法——以准噶尔盆地滴南凸起火山岩为例[J]. 天然气地球科学, 2016, 27(10): 1808-1816.
[10] 韩剑发,胡有福,胡晓勇,于金星,刘炜博,张丽微,齐凤林,何睿. 塔里木盆地塔中隆起良里塔格组礁滩体储集特征及油气富集规律[J]. 天然气地球科学, 2015, 26(S2): 106-114.
[11] 李树同,姚宜同,刘志伟,汪洋,牟炜卫,闫灿灿. 姬塬、陕北地区长81浅水三角洲水下分流河道砂体对比研究[J]. 天然气地球科学, 2015, 26(5): 813-822.
[12] 陈宇航,刘震,姚根顺,吕福亮,唐鹏程,陈亮. 一个深水区深层沉积相早期预测方法——以南海北部深水区D凹陷渐新统为例[J]. 天然气地球科学, 2015, 26(11): 2122-2130.
[13] 张玺华,林良彪,陈洪德,侯明才,陈安清. 扇三角洲沉积储层地震预测方法研究——以川东北元坝地区自流井组珍珠冲段为例[J]. 天然气地球科学, 2013, 24(2): 423-428.
[14] 梁建设,田兵,王琪,唐俊,廖朋,庞国印. 丽水—椒江凹陷月桂峰组地震—沉积响应及烃源岩特征[J]. 天然气地球科学, 2012, 23(3): 482-488.
[15] 张杰, 张振红, 辛红刚, 赵德勇, 李美, 黄黎刚. 地震相分析技术在马岭油田储层预测中的应用[J]. 天然气地球科学, 2012, 23(3): 590-595.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 唐友军,文志刚,窦立荣,徐佑德. 一种估算原油成熟度的新方法[J]. 天然气地球科学, 2006, 17(2): 160 -162 .
[2] 李凤杰;王多云;. 鄂尔多斯盆地西峰油田延长组高分辨率层序地层学研究[J]. 天然气地球科学, 2006, 17(3): 339 -344 .
[3] 阎存凤;袁剑英;赵应成;魏东涛;李在光. 蒙、甘、青地区侏罗纪孢粉组合序列及古气候[J]. 天然气地球科学, 2006, 17(5): 634 -639 .
[4] И.П.Жабрев;史斗;. 生物成因的深部油气[J]. 天然气地球科学, 1997, 8(2): 39 -41 .
[5] 李广之, 胡斌 邓天龙 袁子艳 . 微量元素V和Ni的油气地质意义[J]. 天然气地球科学, 2008, 19(1): 13 -17 .
[6] 文志刚,王正允,何幼斌,彭德堂 . 柴达木盆地北缘上石炭统烃源岩评价[J]. 天然气地球科学, 2004, 15(2): 125 -127 .
[7] 朱光有,戴金星,张水昌,李剑,史斗,文志刚 . 含硫化氢天然气的形成机制及分布规律研究[J]. 天然气地球科学, 2004, 15(2): 166 -170 .
[8] 文志刚;何文祥;米立军;刘逸;王根照;唐友军;. 利用盆地模拟技术评价渤东凹陷下第三系油气勘探潜力[J]. 天然气地球科学, 2004, 15(4): 379 -382 .
[9] 秦百平, 吕修祥,张振红,万晓龙. 油气藏数值模拟及其对开发的意义――以鄂尔多斯盆地油房庄油田定31井区长1油藏为例[J]. 天然气地球科学, 2004, 15(5): 531 -535 .
[10] 穆巧婷;. 走向2030年的世界管道天然气――国际天然气联合会研究报告[J]. 天然气地球科学, 1997, 8(5-6): 32 -36 .