天然气地球科学 ›› 2022, Vol. 33 ›› Issue (9): 1460–1475.doi: 10.11764/j.issn.1672-1926.2022.04.007

• 天然气地球化学 • 上一篇    下一篇

温压共控生烃模拟实验烃类产率演化特征及地质意义

张喜龙1,2,3(),杨兴4,周飞5,鞠鹏飞6,陈永欣1,曹占元1,夏燕青1(),张晓宝1   

  1. 1.中国科学院西北生态环境资源研究院/甘肃省油气资源研究重点实验室,甘肃 兰州 730000
    2.西安市致密油(页岩油)开发重点实验室(西安石油大学),陕西 西安 710065
    3.海洋油气勘探国家工程研究中心,北京 100028
    4.中国石油新疆油田分公司采油二厂,新疆 克拉玛依 834008
    5.中国石油青海油田分公司勘探开发研究院,甘肃 敦煌 736202
    6.中国石油新疆油田分公司工程技术研究院,新疆 克拉玛依 834000
  • 收稿日期:2021-10-31 修回日期:2022-04-13 出版日期:2022-09-10 发布日期:2022-09-09
  • 通讯作者: 夏燕青 E-mail:zhangxilong@lzb.ac.cn;yqxia@lzb.ac.cn
  • 作者简介:张喜龙(1987-),男,甘肃静宁人,助理研究员,博士,主要从事油气地质与地球化学研究.E-mail: zhangxilong@lzb.ac.cn.
  • 基金资助:
    国家自然科学基金(41972135);甘肃省青年科技基金计划(21JR7RA062);中国石油重大科技专项(2016E-0102);西安市致密油(页岩油)开发重点实验室(西安石油大学)开放基金资助项目(XSTS-202005)

Hydrocarbon yield evolution characteristics and geological significance in temperature-pressure controlled simulation experiment

Xilong ZHANG1,2,3(),Xing YANG4,Fei ZHOU5,Pengfei JU6,Yongxin CHEN1,Zhanyuan CAO1,Yanqing XIA1(),Xiaobao ZHANG1   

  1. 1.Northwest Institute of Eco?Environment and Resources,Chinese Academy of Sciences/Key Laboratory of Petroleum Resources,Gansu Province,Lanzhou 730000,China
    2.Xi’an Key Laboratory of Tight oil (Shale oil) Development (Xi’an Shiyou University),Xi’an 710065,China
    3.National Engineering Research Center of Offshore Oil and Gas Exploration,Beijing 100028,China
    4.No. 2 Oil Production Plant,Xinjiang Oilfield Company,PetroChina,Karamay 834008,China
    5.Research Institute of Exploration and Development,Qinghai Oilfield Company,PetroChina,Dunhuang 736202,China
    6.Engineering Technology Research Institute,Xinjiang Oilfield Company,PetroChina,Karamay 834000,China
  • Received:2021-10-31 Revised:2022-04-13 Online:2022-09-10 Published:2022-09-09
  • Contact: Yanqing XIA E-mail:zhangxilong@lzb.ac.cn;yqxia@lzb.ac.cn
  • Supported by:
    The National Natural Science Foundation of China(41972135);the Youth Science and Technology Foundation of Gansu Province(21JR7RA062);the Major Science and Technology Project of CNPC(2016E-0102);the Open Fund of Xi’an Key Laboratory of Tight Oil (Shale Oil) Development(XSTS-202005)

摘要:

为探究深层环境“煤系”烃源岩生排烃潜力及生烃机理,利用WYMN?3型高温高压(HTHP)模拟仪对柴达木盆地北缘DMG1井中侏罗统烃源岩(Ⅲ型有机质,炭质泥岩和煤的RO值分别为0.67%和0.64%)进行了半开放体系温压共控条件下的生排烃模拟实验。结果显示:①炭质泥岩和煤的最大总油产率分别为79.38 mg/gTOC和37.30 mg/gTOC,且总油产率整体呈“双峰”型演化规律;②较低演化阶段(T≤300 ℃,P≤42.0 MPa),2类源岩的排出油产率均小于残留油产率,排烃效率较低,但在400 ℃(51.0 MPa)排油/烃率大幅增加,分别达到了76.84%和83.72%;③排出油族组分主要为非烃和沥青质,其族组分产率演化特征也与液态烃产率演化规律总体相似,炭质泥岩排出油族组分产率整体较煤的族组分产率高;④模拟气主要由烃类气和非烃气(CO2、N2)组成,气态烃产率随着热演化程度的增加而升高,2类源岩最大烃类气产率分别为116.46 mL/gTOC和36.85 mL/gTOC;⑤镜质体反射率(RO)均随温压条件的升高而增加,与温度呈良好的一致性变化规律。此次温压共控模拟实验结果表明,温度仍然是有机质热演化的主要因素,流体压力对Ⅲ型有机质烃产物的形成具有“双重”控制作用,“煤系”烃源岩在高过演化阶段仍具有较强生烃潜力。该研究为进一步认识柴达木盆地北缘侏罗系深层“煤系”烃源岩生排烃规律提供了一定的数据参考。

关键词: 生烃模拟, 温压共控, 烃类产率, 生烃机理, 镜质体反射率(RO), 深层油气

Abstract:

In order to explore the hydrocarbon generation and expulsion potential and mechanism of deep environment “coal measure” source rocks, a semi open system temperature-pressure controlled hydrocarbon generation and expulsion simulation experiment was carried out. We used WYNN-3 high temperature and high pressure (HTHP) simulator and Middle Jurassic source rocks (III type organic matter, carbonaceous mudstone and lignite,RO is 0.67% and 0.64% respectively) of DMG1 Well in the northern margin of Qaidam Basin.The resul-ts demonstrated that: (1) the maximum total oil yields of carbonaceous mudstone and lignite were 79.38 mg/gTOC and 37.30 mg/gTOC, respectively, and showed a “double peak” evolution law as a whole. (2) In the lower evolution stage (T ≤ 300 ℃, P ≤ 42.0 MPa), the expelled oil yield of the two types source rocks was lower than that of the residual oil, and the hydrocarbon expulsion efficiency was low, but the expelled oil yield increased significantly at 400 ℃ (51.0 MPa), reaching 76.84% and 83.72%, respectively. (3) The discharged oil group components were mainly resins and asphaltenes, and the evolution characteristics of group components yield were also generally similar to those of liquid hydrocarbons. The yield of expelled oil group components of carbonaceous mudstone was higher than that of lignite. (4) The simulated gas was mainly composed of hydrocarbon gas and non-hydrocarbon gas (CO2, N2), the yield of gaseous hydrocarbon increased with the elevated thermal evolution. The maximum hydrocarbon gas yield of the two types source rocks were 116.46 mL/gTOC and 36.85 mL/gTOC, respectively. (5) The vitrinite reflectance (RO) increased with the increase of temperature and pressure conditions, and had a good consistency with the temperature. The results of this temperature-pressure co-controlled simulation experiment show that temperature is still the predominant factor in the thermal evolution of organic matter, fluid pressure has a “dual” control on the formation of type III organic hydrocarbon products, and “coal measures” source rocks still have strong hydrocarbon generation potential in the higher evolution stage. This research provided a certain data reference for the hydrocarbon generation and expulsion law of Jurassic deep “coal measures” source rocks in the northern margin of Qaidam Basin.

Key words: Hydrocarbon generation simulation, Temperature-pressure controlled, Hydrocarbon yield, Hydrocarbon generation mechanism, Vitrinite reflectance (RO), Deep oil and gas

中图分类号: 

  • TE122.1

表1

实验样品地球化学参数"

井号层位深度/m岩性TOC/%IH/(mg/g)

IO

/(mg/g)

S1

/(mg/g)

S2

/(mg/g)

Tmax/°CRO/%干酪根类型
DMG1J2d5428.05炭质泥岩21.6580.9712.060.1617.534250.67
DMG1J2d5422.8065.8569.1712.010.3645.554190.64

表2

温压共控模拟实验条件"

实验样品

实验

编号

样品质量

/g

变温时间

/h

恒温时间

/h

实验时间

/h

实验温度

/℃

模拟埋深

/m

静岩压力

/MPa

流体压力浮动范围/MPa
基准值最小值最大值

DMG1井

炭质泥岩

30130.0471.572.073.52503 40070.034.030.640.8
30230.1211.672.073.63004 20086.442.037.850.4
30330.0861.772.073.73504 60094.746.041.455.2
30430.1661.872.073.84005 100105.551.045.961.2
30530.1861.972.073.94506 000123.560.054.072.0
30630.1892.072.074.05007 000144.170.063.084.0
DMG1井煤40130.1561.572.073.52503 40056.634.030.640.8
40230.3581.672.073.63004 20070.042.037.850.4
40330.0841.772.073.73504 60076.646.041.455.2
40430.2501.872.073.84005 10085.051.045.961.2
40530.3381.972.073.94506 000100.060.054.072.0
40630.5022.072.074.05007 000116.670.063.084.0

图1

温压共控模拟实验装备示意(据文献[30]修改)1.高压泵;2.高压活塞容器;3.高压气动阀;4.压力变送器;5.加热炉和热电偶;6.高压釜体;7.液压控制系统(带柱塞泵);8.液压缸;9.背压阀(BPV);10.氮气钢瓶(带减压阀);11.气液收集器/冷阱;12.冷却水循环机;13.真空计;14.真空泵;15.气体收集管;16.配备六通阀给料机的气相色谱仪"

图2

温压共控模拟实验液态烃及排出油族组分产率演化图(a)、(b)为炭质泥岩;(c)、(d)为煤;As.:沥青质;Sa.:饱和烃;Ar.:芳烃;Re.:非烃"

表3

镜质体反射率(RO)及模拟气液累积产率汇总"

源岩类型及DMG1井炭质泥岩,Ⅲ型DMG1井煤,Ⅲ型
实验编号301302303304305306401402403404405406
RO/%0.921.091.661.962.763.000.741.121.472.092.442.95
排出油/(mg/gTOC0.821.6225.7314.3922.5830.990.551.9615.2515.5616.5037.05
残留油/(mg/gTOC3.302.7353.664.341.250.158.478.277.553.020.770.24
总油/(mg/gTOC4.124.3579.3818.7323.8231.149.0110.2322.8018.5817.2737.30
(排油/烃率)/%19.8537.3132.4176.8494.7799.536.0619.1766.9083.7295.5499.35
烃类气体/(mL/gTOC0.271.0311.4936.7494.03116.460.291.044.5214.1324.9036.85
非烃气体/(mL/gTOC16.4233.0573.15117.14127.87144.7624.4829.5233.4532.9335.4130.52
总气体/(mL/gTOC16.6934.0884.64153.88221.90261.2324.7730.5637.9847.0660.3167.38
总烃类气/(mg/gTOC0.261.0113.1134.8177.0287.420.240.975.0013.0419.3930.57
总烃/(mg/gTOC4.385.3692.5053.54100.84118.559.2511.2027.7931.6236.6567.87
饱和烃/(mg/gTOC0.120.174.480.631.241.730.090.221.580.711.282.46
芳烃/(mg/gTOC0.040.104.333.656.926.750.030.202.893.424.155.88
非烃/(mg/gTOC0.020.1312.592.1510.239.640.140.389.028.246.5214.51
沥青质/(mg/gTOC0.631.224.337.964.1812.870.281.161.753.204.5514.20
C1/(mL/gTOC0.220.817.1028.2883.23111.750.260.802.8911.1023.1332.43
C2+/(mL/gTOC0.050.224.408.4710.814.710.020.241.643.031.774.43
C2/(mL/gTOC0.010.081.954.997.143.310.010.120.861.901.202.78
C3/(mL/gTOC0.020.091.702.192.600.800.010.120.500.730.381.08
C4/(mL/gTOC0.010.030.500.860.780.270.000.000.180.260.130.36
C5/(mL/gTOC0.010.010.180.320.170.120.010.000.070.100.040.12
C6/(mL/gTOC0.000.010.050.090.080.090.000.000.030.040.010.05
N2/(mL/gTOC4.661.380.390.622.181.680.651.021.382.540.261.07
CO2/(mL/gTOC11.6831.6572.74116.48125.12143.0723.8228.4932.0730.3835.1529.46

表4

排出油族组分及模拟气组分分布特征"

实验

编号

排出油族组分/%饱芳比非烃气/%烃类气/%

干燥

系数

SaArNhAsNh+AsN2CO2C1C2C3C4C5C6C2+∑C1-C6
30115.15.51.977.679.52.7627.9469.981.340.080.100.070.040.010.291.630.82
30210.56.38.075.283.21.664.0492.892.360.240.270.090.040.020.653.020.78
30317.416.848.916.965.81.030.4685.948.382.312.010.590.220.065.1913.580.62
3044.425.415.055.370.30.170.4075.6918.373.251.420.560.210.065.5023.880.77
3055.530.745.318.563.80.180.9856.3937.513.231.170.350.080.044.8742.380.89
3065.621.831.141.572.60.260.6454.7742.781.300.310.100.060.041.8044.580.96
40116.35.326.452.178.43.112.6396.161.060.040.040.000.020.000.101.160.91
40211.410.019.359.478.61.143.3293.222.610.400.400.000.000.000.803.410.77
40310.418.959.211.570.70.553.6384.457.602.261.300.490.190.074.3111.910.64
4044.522.052.920.673.50.215.4064.5723.584.041.550.550.220.086.4330.020.79
4057.725.239.527.667.10.310.4358.2838.352.000.630.210.070.022.9341.290.93
4066.615.939.238.377.50.421.5843.7248.134.171.600.530.200.086.5754.700.88

图3

温压共控模拟实验排出油饱和烃组分m/z=85质量色谱(a)—(f)为炭质泥岩系列实验;(g)—(l)为煤系列实验"

图4

温压共控模拟实验气及组分产率演化(a)、(b)为炭质泥岩;(c)、(d)为煤;C1:甲烷;C2+:重烃气"

图5

温压共控模拟实验总烃产率演化(a)炭质泥岩;(b)煤"

图6

温压共控模拟实验镜质体反射率(RO)演化(a)RO随时间演化关系(据HUANG等[51]修改);(b)RO随温压变化规律(C、M分别指本次实验的炭质泥岩和煤;M1、M2分别指恒压和增压,数据来源于吴远东等[52])"

图7

冷北斜坡成藏模式"

1 汤庆艳,张铭杰,张同伟,等.生烃热模拟实验方法述评[J].西南石油大学学报(自然科学版),2013,35(1): 52-62.
TANG Q Y,ZHANG M J, ZHANG T W, et al. A review on pyrolysis experimentation on hydrocarbon generation[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2013,35(1): 52-62.
2 何川,郑伦举,王强,等.烃源岩生排烃模拟实验技术现状、应用与发展方向[J].石油实验地质,2021,43(5): 862-870.
HE C, ZHENG L J, WANG Q, et al. Experimental development and application of source rock thermal simulation for hydrocarbon generation and expulsion[J]. Petroleum Geology & Experiment,2021,43(5):862-870.
3 LEWAN M D, WINTERS J C, MCDONALD J H. Generation of oil-like pyrolyzates from organic-rich shales[J].Science,1979,203(4383):897-899.
4 BEHAR F,KRESSMANN S,RUDKIEWICZ J L, et al. Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking[J]. Organic Geochemistry,1992,19(1): 73-189.
5 LEWAN M D. Laboratory Simulation of Petroleum Formation[M]. New York: Organic Geochemistry Plenum Publishing, 1993.
6 刘德汉,张惠之,戴金星,等.煤岩显微组分的成烃实验研究与评价[J].科学通报,2000,45(4):346-352.
LIU D H, ZHANG H Z, DAI J X, et al. Experimental study and evaluation of hydrocarbon generation from coal macerals[J]. Chinese Science Bulletin,2000,45(4):346-352.
7 贾望鲁,帅艳华,彭平安,等.塔北轮南地区原油沥青质生烃动力学研究[J].科学通报,2004,49(A1):76-80.
JIA W L, SHUAI Y H, PENG P A, et al. Hydrocarbon generation kinetics of crude asphaltenes in Lunnan area, northern Tarim Basin[J].Chinese Science Bulletin,2004,49(A1):76-80.
8 PAN C, JIANG L, LIU J, et al. The effects of calcite and montmorillonite on oil cracking in confined pyrolysis experiments[J]. Organic Geochemistry,2010,41(7):611-626.
9 LEWAN M D. Experiments on the role of water in petroleum formation[J].Geochimica et Cosmochimica Acta,1997,61(17):3691-3723.
10 孙丽娜,张明峰,吴陈君,等.水对不同生烃模拟实验系统产物的影响[J].天然气地球科学,2015,26(3): 524-532.
SUN L N, ZHANG M F, WU C J, et al. The effect of water medium on the products of different pyrolysis system[J]. Natural Gas Geoscience,2015,26(3):524-532.
11 MANGO F D, ELROD L W. The carbon isotopic composition of catalytic gas: A comparative analysis with natural gas[J]. Geochimica et Cosmochimica Acta,1999,63(7-8):1097-1106.
12 解启来,周中毅,陆明勇.碳酸盐矿物结合有机质:一种重要的成烃物质[J].矿物学报,2000,20(1): 59-62.
XIE Q L, ZHOU Z Y, LU M Y. Organic matter enclosed in carbonate minerals: A kind of important hydrocarbon-producing matter[J]. Acta Mineralogica Sinica,2000,20(1):59-62.
13 PAN C, GENG A, ZHONG N, et al. Kerogen pyrolysis in the presence and absence of water and minerals. 1. gas components[J]. Energy & Fuels,2008,22(1):416-427.
14 姜兰兰,潘长春,刘金钟.矿物对原油裂解影响的实验研究[J].地球化学,2009,38(2):165-173.
JIANG L L, PAN C C, LIU J Z. Experimental study on effects of minerals on oil cracking[J]. Geochimica, 2009,38(2):165-173.
15 贾承造,庞雄奇.深层油气地质理论研究进展与主要发展方向[J].石油学报,2015,36(12):1457-1469.
JIA C Z, PANG X Q. Research processes and main development directions of deep hydrocarbon geological theories[J].Acta Petrolei Sinica,2015,36(12):1457-1469.
16 孙龙德,邹才能,朱如凯,等.中国深层油气形成,分布与潜力分析[J].石油勘探与开发,2013,40(6):641-649.
SUN L D, ZOU C N, ZHU R K, et al. Formation, distribution and potential of deep hydrocarbon resources in China[J]. Petroleum Exploration & Development,2013,40(6):641-649.
17 TISSOT B P, WELTE D H. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration[M]. New York: Springer-Verlag, 1978.
18 BRAUN R L, BURNHAM A K. Mathematical model of oil generation,degradation,and expulsion[J]. Energy Fuels,1990,4(2):132-146.
19 LANDAIS P, MICHELS R, ELIE M. Are time and temperature the only constraints to the simulation of organic matter maturation?[J].Organic Geochemistry,1994,22(3-5):617-630.
20 PRICE L C, WENGER L M. The influence of pressure on petroleum generation and maturation as suggested by hydrous pyrolysis[J]. Organic Geochemistry,1992,19(1-3):141-159.
21 黄健全.盆地深部油气形成的高温高压模拟实验研究[D].北京:中国科学院研究生院,1992.
HUANG J Q. Experimental Study on High Temperature and High Pressure Simulation of Hydrocarbon Formation in Deep Basin[D]. Beijing: Graduate School of Chinese Academy of Sciences, 1992.
22 姜峰,杜建国,王万春,等.高温超高压模拟实验研究——Ⅱ.高温高压下烷烃产物的演化特征[J]. 沉积学报,1998,16(4):145-148.
JIANG F, DU J G, WANG W C, et al. The study on high-pressure-high-temperature aqueous pyrolysis: Ⅱ. evolutionary characteristics of alkane generated from organic matter under high temperature and high pressure[J]. Acta Sedimentologica Sinica,1998,16(4):145-148.
23 姜峰,杜建国,谢鸿森,等.高温高压模拟实验气态产物碳同位素演化特征[J].地球化学,2000,29(1):73-76.
JIANG F, DU J G, XIE H S, et al. Evolution characteristics of δ13C values of gaseous hydrocarbons under high-temperature and high-pressure conditions as suggested by aqueous pyrolysis[J]. Geochimica,2000,29(1): 73-76.
24 郝芳.超压盆地生烃作用动力学与油气成藏机理[M].北京:科学出版社,2005.
HAO F. Kinetics of Hydrocarbon Generation and Mechanisms of Petroleum Accumulation in Overpressured Basins[M]. Beijing: Science Press, 2005.
25 郑伦举. PVT共控作用下油气的形成过程与演化模式[D].武汉:中国地质大学,2013.
ZHENG L J. Formation Process and Evolution Mode of Petroleum Controlled by PVT[D].Wuhan:China University of Geo-sciences, 2013.
26 孙丽娜,张中宁,吴远东,等.半开放体系下温压对烃源岩HTHP模拟产物产率的影响[J].天然气地球科学, 2015,26(1):118-127.
SUN L N, ZHANG Z N, WU Y D, et al. Effect of temperature and pressure on hydrocarbon yield of source rock HTHP simulation experiment in semi-open system[J].Natural Gas Geo-science,2015,26(1):118-127.
27 吴远东,张中宁,孙丽娜,等.半开放体系下流体压力对烃源岩HTHP模拟产物产率及镜质体反射率的影响[J].天然气地球科学,2016,27(10):1904-1912.
WU Y D, ZHANG Z N, SUN L N, et al. Effect of liquids pressure on hydrocarbon yield and Ro of source rock HTHP simulation experiment in semi-open system[J].Natural Gas Geo-science,2016,27(10):1904-1912.
28 张喜龙.柴达木盆地侏罗系烃源岩生烃机理及资源潜力研究[D].北京:中国科学院大学,2019.
ZHANG X L. Hydrocarbon Generation Mechanism and Resource Potential of Jurassic Source Rocks in Qaidam Basin[D]. Beijing: University of Chinese Academy of Sciences,2019.
29 王玉华,侯启军,孙德君,等.柴达木盆地北缘地区中新生代地层油气生成与资源评价[M].北京:科学出版社, 2004.
WANG Y H, HOU Q J, SUN D J, et al. Hydrocarbon Generation and Resource Evaluation of Mesozoic Cenozoic Strata in the Northern Margin of Qaidam Basin[M]. Beijing: Science Press, 2004.
30 ZHANG D W, WANG L H, SU L, et al. The chemical kinetics of the semi-open hydrous pyrolysis system: Time series analysis of lithostatic pressure and fluid pressure[J]. International Journal of Coal Geology, 2020,220: 103418.
31 张更新.单质硫对有机质深化成烃的影响[D].兰州:中国科学院兰州地质研究所,2001.
ZHANG G X. The Effect of Sulphur on Transformation of Organic Matter to Hydrocarbon[D]. Lanzhou: Lanzhou Institute of Geology, Chinese Academy of Sciences,2001.
32 秦艳,彭平安,于赤灵,等.硫在干酪根裂解生烃中的作用[J].科学通报,2004,49(A1):9-16.
QIN Y, PENG P A, YU C L, et al. The role of sulfur in hydrocarbon generation from kerogen cracking[J]. Chinese Science Bulletin,2004,49(A1): 9-16.
33 PEPPER A S, CORVI P J. Simple kinetic models of petroleum formation. Part III: Modelling an open system[J]. Marine & Petroleum Geology,1995,12(4):417-452.
34 王春江,夏燕青,罗斌杰.低成熟阶段煤可溶有机质的热缩聚作用[J].科学通报,1997,42(6):631-633.
WANG C J, XIA Y Q, LUO B J. The thermal polycondensation of soluble organic matter in the immature coal[J]. Chinese Science Bulletin,1997,42(6):631-633.
35 程克明,张朝富.吐鲁番—哈密盆地煤成油研究[J].中国科学(B辑),1994,24(11):1216-1222.
CHENG K M, ZHANG C F. Study on coal-derived oil in Turpan-Hami Basin[J]. Science China (Series B), 1994,24(11):1216-1222.
36 孟仟祥,孙敏卓,房嬛,等.盐湖相低演化烃源岩的生烃机理及生物标志物演化特征:沥青“A”热模拟[J].沉积学报,2007,25(5):800-807.
MENG Q X, SUN M Z, FANG X, et al. Hydrocarbon generation mechanism and evolution characteristics of biomarkers on low-evolutionary source rocks of the salt lacustrine facies[J]. Acta Sedimentologica Sinica, 2007,25(5):800-807.
37 TISSOT B. Influence of nature and diagenesis of organic matter in formation of petroleum[J].AAPG Bulletin,1974,58(3):499-506.
38 戴金星.成煤作用中形成的天然气和石油[J].石油勘探与开发,1979,6(3):10-17.
DAI J X. The oil and gas generation during coalification[J]. Petroleum Exploration & Development,1979,6(3): 10-17.
39 高岗,王延斌,韩德馨,等.煤的加水热模拟气特征对比[J].地质地球化学,2003,31(1):92-96.
GAO G, WANG Y B, HAN D X, et al. Comparison of the characteristics of thermally simulative gas from two types of coal[J]. Geology Geochemistry,2003,31(1):92-96.
40 SEEWALD J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J].Nature,2003,426(6964):327-333.
41 高岗,刚文哲.加水热模拟实验中泥灰岩气态产物特征[J].中国石油大学学报(自然科学版),1996,20(2):12-16.
GAO G, GANG W Z. Gaseous products of the marl in hydrous pyrolysis at high and low temperatures[J]. Journal of China University of Petroleum (Edition of Natural Sciences),1996,20(2):12-16.
42 朱岳年.天然气中N2的成因与富集[J].天然气工业,1999,19(3):23-27.
ZHU Y N. Origin and enrichment of nitrogen in natural gas[J]. Natural Gas Industry,1999,19(3):23-27.
43 付小东,秦建中,姚根顺,等.两种温压体系下烃源岩生烃演化特征对比及其深层油气地质意义[J].地球化学, 2017,46(3):262-275.
FU X D, QIN J Z, YAO G S, et al. The comparison of hydrocarbon generation and evolution characteristics between two temperature-pressure simulation systems and its geological significance for deep reservoir exploration[J]. Geochimica,2017,46(3):262-275.
44 吕秀阳,何龙,郑赞胜,等.近临界水中的绿色化工过程[J].化工进展,2003,22(4):477-481.
LV X Y, HE L, ZHENG Z S, et al. Green chemical processes in near critical water[J]. Chemical Industry and Engineering Progress,2003,22(4):477-481.
45 PRICE L C. Thermal stability of hydrocarbons in nature: Limits, evidence, characteristics, and possible controls[J]. Geochimica et Cosmochimica Acta,1993,57(14):3261-3280.
46 郑伦举,秦建中,何生,等.地层孔隙热压生排烃模拟实验初步研究[J].石油实验地质,2009,31(3):296-302.
ZHENG L J, QIN J Z, HE S, et al. Preliminary study of formation porosity thermocompression simulation experiment of hydrocarbon generation and expulsion[J]. Petroleum Geology & Experiment,2009,31(3):296-302.
47 王兆云,程克明,张柏生.加水热模拟实验气态产物特征及演化规律研究[J].石油勘探与开发,1995,22(3): 36-40.
WANG Z Y, CHENG K M, ZHANG B S. The study on the characteristics and evolution regularity of product of gas under pyrolysis simulation experiments[J]. Petroleum Exploration & Development,1995,22(3):36-40.
48 秦建中,刘井旺,刘宝泉,等.加温时间、加水量对模拟实验油气产率及地化参数的影响[J].石油实验地质,2002,24(2):152-157.
QIN J Z, LIU J W, LIU B Q, et al. Hydrocarbon yield and geochemical parameters affected by heating time and added water amount in the simulation test[J]. Petroleum Geology & Experiment,2002,24(2):152-157.
49 LOPATIN N V. The main stage of petroleum formation (in Russian)[J]. Lzvestiya Akademii Nauk SSSR Seriya Gelogi-cheskaya,1969,52(6):69-76.
50 DOW W G. Kerogen studies and geological interpretations[J]. Journal of Geochemical Exploration,1977,7(1):79-99.
51 HUANG W L. Experimental study of vitrinite maturation: Effects of temperature, time, pressure, water, and hydrogen index[J]. Organic Geochemistry,1996,24(2):233-241.
52 吴远东,张中宁,吉利民,等.流体压力对半开放体系有机质模拟生烃产率和镜质体反射率的影响[J].天然气地球科学,2016,27(5): 883-891.
WU Y D, ZHANG Z N, JI L M, et al. The changes of hydrocarbon yields and RO for source rock in the semi-open simulation with increasing of fluids pressure[J]. Natural Gas Geoscience,2016,27(5):883-891.
53 SAJGÓ C, MCEVOY J, WOLFF G A, et al. Influence of temperature and pressure on maturation processes—I. Preliminary report[J].Organic Geochemistry,1986,10(1/3):331-337.
54 BAYON R L, BREY G P, ERNST W G, et al. Experimental kinetic study of organic matter maturation: Time and pressure effects on vitrinite reflectance at 400 ℃[J]. Organic Geochemistry,2011,42(4):340-355.
55 BAYON L R, ADAM C, MAHLMANN R F. Experimentally determined pressure effect on vitrinite reflectance at 450 ℃[J]. International Journal of Coal Geology,2012,92(1):69-81.
[1] 崔永谦, 王飞宇, 张传宝, 冯伟平, 侯凤香, 马学峰, 马樱. 渤海湾盆地冀中坳陷霸县凹陷深层沙四段源岩有机相评价及意义[J]. 天然气地球科学, 2021, 32(1): 38-46.
[2] 赵晗, 马中良, 郑伦举, 谭静强, 李群, 王张虎, 宁传祥. 有限空间温压共控热模拟油气产物地球化学特征[J]. 天然气地球科学, 2020, 31(1): 73-83.
[3] 李二庭, 靳军, 曹剑, 马万云, 米巨磊, 任江玲. 准噶尔盆地新光地区佳木河组天然气地球化学特征及成因[J]. 天然气地球科学, 2019, 30(9): 1362-1369.
[4] 姚根顺,伍贤柱,孙赞东,余春昊,葛云华,杨贤友,文龙,倪超,付小东,张建勇. 中国陆上深层油气勘探开发关键技术现状及展望[J]. 天然气地球科学, 2017, 28(8): 1154-1164.
[5] 孙丽娜,张明峰,吴陈君,熊德明,苏龙,妥进才. 水对不同生烃模拟实验系统产物的影响[J]. 天然气地球科学, 2015, 26(3): 524-532.
[6] 孙丽娜,张中宁,吴远东,苏龙,夏燕青,高占东,郑有伟,王自翔. 半开放体系下温压对烃源岩HTHP模拟产物产率的影响[J]. 天然气地球科学, 2015, 26(1): 118-127.
[7] 张海坤,周世新,付德亮,巩书华,李 靖,王保忠,柳少鹏. 塔里木盆地塔深1井深层油气相态预测[J]. 天然气地球科学, 2013, 24(5): 999-1004,1068.
[8] 黄臣军, 刘格云, 张林炎, 周新桂, 范昆, 范正平, 鄢犀利. 黄骅坳陷深层油气成藏潜力与勘探方向[J]. 天然气地球科学, 2009, 20(5): 683-690.
[9] 妥进才;王先彬;. 深层油气和非生物成因天然气的耦合与差异[J]. 天然气地球科学, 2006, 17(1): 36-41.
[10] 妥进才, 王先彬, 周世新, 陈晓东, . 深层油气勘探现状与研究进展[J]. 天然气地球科学, 1999, 10(6): 1-8.
[11] 周世新, 王先彬, 妥进才, 陈晓东, . 深层油气地球化学研究新进展[J]. 天然气地球科学, 1999, 10(6): 9-15.
[12] 段毅;王先彬;. 深层油气形成的若干问题探讨[J]. 天然气地球科学, 1999, 10(6): 22-26.
[13] 妥进才;王先彬;周世新;. 渤海湾盆地深层油气资源前景分析[J]. 天然气地球科学, 1999, 10(6): 27-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[3] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[4] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[5] Seewald J S;Benitez-Netson B C;Whelan J K(美国);刘全有(译). 天然气形成与组成的实验和理论因素[J]. 天然气地球科学, 2000, 11(4-5): 30 -44 .
[6] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[7] 马立祥;. 断层封闭性研究在烃类聚集系统分析中的意义[J]. 天然气地球科学, 2000, 11(3): 1 -8 .
[8] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[9] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[10] 廖成君. VSP技术在锦612复杂断块油藏开发部署研究中的应用[J]. 天然气地球科学, 2005, 16(1): 117 -122 .