天然气地球科学 ›› 2022, Vol. 33 ›› Issue (9): 1509–1517.doi: 10.11764/j.issn.1672-1926.2022.04.003

• 天然气开发 • 上一篇    下一篇

基于Hiles and Mott渗流模型的有界储层产量递减模型

詹泽东1,2,3(),郭彤楼2,赵爽2,王勇飞2,郭科3,周仲礼3,毕有益2   

  1. 1.成都理工大学地球物理学院,四川 成都 610059
    2.中国石油化工股份有限公司西南油气分公司,四川 成都 610041
    3.成都理工大学四川省数学地质重点实验室,四川 成都 610059
  • 收稿日期:2022-01-28 修回日期:2022-03-26 出版日期:2022-09-10 发布日期:2022-09-09
  • 作者简介:詹泽东(1986-),男,四川内江人.高级工程师,硕士,主要从事油气开发研究及管理工作.E-mail:superzzdxnyq@sina.com.
  • 基金资助:
    国家科技重大专项(2016ZX05048004);中国石化科技项目(P20055-6)

Research and application of production decline model for bounded reservoir based on Hiles and Mott’s mechanism

Zedong ZHAN1,2,3(),Tonglou GUO2,Shuang ZHAO2,Yongfei WANG2,Ke GUO3,Zhongli ZHOU3,Youyi BI2   

  1. 1.College of Geophysics,Chengdu University of Technology,Chengdu 610059,China
    2.Southwest Oil & Gas Company,SINOPEC,Chengdu 610041,China
    3.Key Laboratory of Geomathematics of Sichuan Province,Chengdu University of Technology,Chengdu 610059,China
  • Received:2022-01-28 Revised:2022-03-26 Online:2022-09-10 Published:2022-09-09
  • Supported by:
    The Major National Science and Technology Project(2016ZX05048004);the SINOPEC Scientific Research Project(P20055-6)

摘要:

根据油气井实际生产过程中普遍存在近似先定产降压、再定压降产的生产特征,开展在有界储层拟稳态阶段改用定压生产模式的产量递减模型研究,为明确油气井产量递减的渗流机理提供一种新的理论依据。依托Hiles and Mott模型,通过理论推导建立了有界储层在拟稳态阶段定压生产的产量递减模型。结果表明:该模型形式上与Arps递减模型具有一致性,但相比Arps产量递减模型,该模型更具一般性,即当Hiles and Mott指数为1时,流体渗流遵循达西定律,拟稳态阶段改变生产方式为定压生产情况下,油气井产量递减遵行指数递减;当Hiles and Mott指数在0.5~1区间时,流体渗流表现为高速非达西渗流,递减模型为幂律递减;当Hiles and Mott指数为0.5时,遵行直线递减模型;当Hiles and Mott指数大于1时,流体渗流为非达西低速渗流条件下,产量递减模型转化为双曲递减模型,并且用Arps形式表征的3个参数之间具有非线性相关性,且满足质量守恒定律,特别是当Hiles and Mott指数趋于无限大时,油气井产量递减模型无限接近于Arps递减模型的调和递减。这就为有界储层采用Arps递减模型开展油气井动态诊断赋予了渗流机理解释,解释了Arps递减模型质量不守恒和调和递减累计产量模型无界性的原因,对深入与扩展Arps产量递减模型的应用具有重要理论意义,也为利用产量递减模型开展储层参数反演提供了科学依据。

关键词: 渗流机理, 拟稳态, 产量递减, Arps, 质量守恒

Abstract:

According to the common production characteristics in the actual production process of oil and gas wells, the production decline model under the change of constant pressure production mode to the quasi-steady state of bounded reservoir is studied, which provides a new theoretical basis for defining the seepage mechanism of oil and gas well production decline. Based on Hiles and Mott’s mechanism, through theoretical derivation, a new production decline model is established when the bounded reservoir reaches quasi-steady state in the late stage of boundary flow, under the condition of a constant pressure production. The results show that the model is formally consistent with Arps’ decline model, and its three decline parameters have exponential correlation. However, compared with Arps’ production decline model, this model is more extensive and general. That is, when the exponential coefficient from Hiles and Mott’s constitutive equation is 1, which means fluid seepage follows Darcy's law, the production decline of oil and gas wells follows exponential decline, with the condition of pseudo steady state, because of boundary effect. When the exponential coefficient from Hiles and Mott’s constitutive equation varies between 0 and 1, the fluid is in the transitional state of Darcy flow and turbulence, and the decline curve is a power function decline, and specially when the exponential coefficient from Hiles and Mott’s constitutive equation is 0.5, which means the fluid is in a turbulent state, and the production decline curve of oil and gas wells is a straight line. When the exponential coefficient is greater than 1, which means fluid seepage is low-speed non Darcy flow, the production decline becomes a hyperbolic decline curve, and the three characterization parameters of hyperbolic decline have nonlinear correlation, and the decline model satisfies the law of mass conservation. This not only lays a theoretical foundation for the analysis and discrimination of fluid seepage characteristics in the quasi steady state stage of bounded reservoir, but also provides a scientific basis for reservoir parameter inversion using production decline model, which is of great significance for deepening and expanding the application of Arps’ production decline model, so it has strong practicability and foresight.

Key words: Seepage mechanism, Quasi steady state, Production decline, Arps, Mass conservation

中图分类号: 

  • TE312

图1

拟稳态条件下油气渗流等效电路图"

图2

拟稳态条件下定流压油气渗流等效电路图"

图3

典型井分阶段递减曲线特征"

图4

中江气田不同工作制度下气井初始递减率相关图"

图5

边界流晚期拟稳态条件下油气井渗流特征诊断图"

表1

气井岩心渗流实验数据统计"

压力梯度/(MPa/cm)0.060.120.170.190.24
气体流量/(mL/min)0.130.430.810.951.53

图6

岩心渗流实验流量—压力梯度拟合图"

表2

气井(对应表1)生产数据"

年份年流量/(104 m3/a)递减率/a-1Ln(qLn(D
20161 005.30
2017525.470.477 2976.264 294-0.739 62
2018325.170.381 1855.784 346-0.964 47
2019219.750.324 2065.392 479-1.126 38
2020156.390.288 3415.052 322-1.243 61
2021117.720.247 2214.768 339-1.397 47

图7

气井产量递减特征曲线"

1 ARPS J J. Analysis of decline curve[J].Transactions of the AIME,1945,160(1):228-247.
2 ARPS J J. Estimation of primary oil reserves[J].Transactions of the AIME,1956,207(1):182-191.
3 陈元千.确定定容气藏递减类型的新方法[J].石油勘探与开发,1984,11(3):56-63.
CHEN Y Q. A method of determining decline characteristics for a constant volume gas reservoir[J]. Petroleum Exploration & Development,1984,11(3):56-63.
4 陈元千.双曲线递减分析的一个简单方法[J].天然气工业,1989,9(2):24-27.
CHEN Y Q. A simple method for hyperbolic decline analysis[J].Natural Gas Industry,1989,9(2):24-27.
5 陈元千.判断油田递减类型的新式典型曲线图[J].中国海上油气,1993,7(6):33-39.
CHEN Y Q. New typical curve for the judgement of decline types of oil field[J].China Offshore Oil and Gas,1993,7(6):33-39.
6 俞启泰.水驱油田产量递减规律[J].石油勘探与开发,1993,20(4):72-80.
YU Q T. Decline curve analysis for a water drive reservoir[J].Petroleum Exploration & Development,1993,20(4):72-80.
7 俞启泰.水驱油田的驱替特征与递减特征[J].石油勘探与开发,1995,22(1):39-42.
YU Q T. Drive curves and decline curves for water drive field[J].Petroleum Exploration & Development,1995,22(1):39-42.
8 蒋立江,蔡成渝.四川盆地天然气藏产量预测的实践与认识[J].石油勘探与开发,1995,22(3):82-86.
JIANG L J, CAI C Y. Practice and understanding of production prediction of natural gas reservoirs in Sichuan Basin[J]. Pe-troleum Exploration & Development,1995,22(3):82-86.
9 胡允栋.产量递减的指数分布和反正切微分分布规律[J].石油勘探与开发,1997,24(6):76-81.
HU Y D. Exponential distribution and arctangent differential distribution of production decline[J]. Petroleum Exploration and Development,1997,24(6):76-81.
10 李传亮,孔祥言,许广明.产量递减规律的诊断方法[J].钻采工艺,1998,20(6):68-70.
LI C L, KONG X Y, XU G M. Diagnosis method for production decline laws[J].Drilling & Production Technology,1998, 20(6):68-70.
11 俞启泰.一种新型递减曲线[J].石油勘探与开发,1999,26(3):72-75.
YU Q T. A new decline curve[J]. Petroleum Exploration & Development,1999,26(3):72-75.
12 冉玉霞,张钊,车起军,等.油田储量商品价值评估方法[J].石油勘探与开发,2002,29(5):99-100.
RAN Y X, ZHANG Z, CHE Q J, et al. Methods for evaluating commodity value of oil reservoirs[J]. Petroleum Exploration & Development,2002,29(5):99-100.
13 董伟,焦健,谢世建,等.油气田开发措施效果定量评价的累计产量曲线法——以渤海湾盆地雁翎油田注氮气试验区为例[J].石油勘探与开发,2016,43(4):615-620.
DONG W, JIAO J, XIE S J, et al. Cumulative production curve method for the quantitative evaluation on the effect of oilfield development measures: A case study of the nitrogen injection pilot in Yanling Oilfield,Bohai Bay Basin[J]. Petroleum Ex-ploration & Development,2016,43(4):615-620.
14 王怒涛,杜凌云,贺海波,等.油气井产量递减分析新方法[J].天然气地球科学,2020,31(3):335-339.
WANG N T, DU L Y, HE H B, et al. New method for analysis of oil and gas well production decline[J].Natural Gas Geoscience,2020,31(3):335-339.
15 FETKOVICH M J. Decline curve analysis using type curves[J].Journal of Petroleum Technology,1980,32(6):1065-1077.
16 陈新彬,常毓文,王燕灵,等.低渗透储层产量递减模型的渗流机理及应用[J].石油学报,2011,32(1):113-116.
CHEN X B, CHANG Y W, WANG Y L, et al. Percolation mechanism and application of a production-decline model in low-permeability reservoirs[J].Acta Petrolei Sinica,2011,32(1):113-116.
17 陈元千,郝明强.Arps递减微分方程的推导及应用[J].断块油气田,2014,21(1):57-58.
CHEN Y Q, HAO M Q. Derivation and application of Arps decline differential equation[J].Fault-block Oil & Gas Field,2014, 21(1):57-58.
18 詹泽东,张岩,段永明,等.非常规气藏产量递减规律与评价研究[J].钻采工艺,2016,39(1):76-78.
ZHAN Z D, ZHANG Y, DUAN Y M, et al. Research on production decline law and evaluation of unconventional gas reservoirs[J].Drilling & Production Technology,2016,39(1):76-78.
19 冯文光.油气渗流力学基础[M].北京:科学出版社,2007.
FENG W G. Fundamentals of Oil and Gas Seepage Mechanics[M]. Beijing: Science Press,2007.
20 翟云芳.渗流力学(第四版)[M].北京:石油工业出版社,2016.
ZHAI Y F. Seepage Mechanics(The Fourth Edition)[M]. Beijing: The Petroleum Industry Press,2016.
21 FENG J D, LUO R L, CHENG L S, et al. A Composite Seepage Model for Fractured Reservoir[C]. SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, March 2009, SPE-119255-MS.
22 FETKOVICH M J. A simplified approach to water influx calculations-finite aquifer systems[J]. Journal of Petroleum Technology, 1971,23(7):814-828.
23 刘宝华.现代产量递减分析方法求取安达凹陷试采气井储层参数[J].油气井测试,2019,28(6):59-65.
LIU B H. Using modern production decline analysis to obtain the gas well reservoir properties in Anda Sag[J]. Well Testing,2019, 28(6):59-65.
24 PALACIO J C, BLASIGAME T A. Unavailable-decline-curve Analysis with Type Curves-Analysis of Gas Well Production Data[C]. SPE-25909-MS.The Low Permeability Reservoirs Symposium, Denver, Colorado, April 1993.
[1] 姜宇玲, 陈晓宇, 包汉勇. 页岩气分段压裂水平井产量递减快速预测新模型[J]. 天然气地球科学, 2021, 32(6): 845-850.
[2] 王怒涛, 杜凌云, 贺海波, 林火养, 祝明谦. 油气井产量递减分析新方法[J]. 天然气地球科学, 2020, 31(3): 335-339.
[3] 周尚文, 王红岩, 刘浩, 郭伟, 陈浩. 基于Arps产量递减模型的页岩损失气量计算方法[J]. 天然气地球科学, 2019, 30(1): 102-110.
[4] 黄雨,李晓平,谭晓华. 三重介质复合气藏水平井不稳定产量递减动态分析[J]. 天然气地球科学, 2018, 29(8): 1190-1197.
[5] 陶士振, 高晓辉, 李昌伟, 曾溅辉, 张响响, 杨春, 张婧雅, 公言杰. 煤系致密砂岩气渗流机理实验模拟研究——以四川盆地上三叠统须家河组煤系致密砂岩气为例[J]. 天然气地球科学, 2016, 27(7): 1143-1152.
[6] 段永明, 张岩, 刘成川, 曾焱, 吴铬, 卜淘, 邓美洲, 尹慧敏. 川西致密砂岩气藏开发实践与认识[J]. 天然气地球科学, 2016, 27(7): 1352-1359.
[7] 魏明强, 段永刚, 方全堂, 李安豪, 卢婷. 页岩气藏压裂水平井产量递减曲线分析法[J]. 天然气地球科学, 2016, 27(5): 898-904.
[8] 岳思明,王展钢,张珑,祁英会,杨磊,韩红霞. 塔里木盆地塔中地区碳酸盐岩不同储层的递减率分析[J]. 天然气地球科学, 2015, 26(S2): 182-185.
[9] 王卫红,刘传喜,刘华,穆林,伦增珉,郭艳东. 超高压气藏渗流机理及气井生产动态特征[J]. 天然气地球科学, 2015, 26(4): 725-732.
[10] 谢维扬,李晓平,张烈辉,王俊超,程子洋,袁淋. 页岩气多级压裂水平井不稳定产量递减探讨[J]. 天然气地球科学, 2015, 26(2): 384-390.
[11] 张建国,刘锦华,徐运动,游良容. 低渗薄层碳酸盐岩气藏水平井长度优化研究[J]. 天然气地球科学, 2015, 26(1): 180-185.
[12] 王军磊,贾爱林,何东博,位云生,齐亚东. 致密气藏分段压裂水平井产量递减规律及影响因素 致密气藏分段压裂水平井产量递减规律及影响因素[J]. 天然气地球科学, 2014, 25(2): 278-285.
[13] 梁利平,蔡明金,贾永禄. 低渗透油藏压裂井产量递减规律分析[J]. 天然气地球科学, 2012, 23(4): 770-774.
[14] 董伟宏, 杨慎. 气井产量曲线递减趋势影响因素及产量预测[J]. 天然气地球科学, 2009, 20(3): 411-415.
[15] 朱维耀;刘学伟;胡永乐;罗凯;单文文;. 凝析气液变相态微观渗流机理研究[J]. 天然气地球科学, 2006, 17(3): 292-295.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[3] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[4] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[5] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[6] Seewald J S;Benitez-Netson B C;Whelan J K(美国);刘全有(译). 天然气形成与组成的实验和理论因素[J]. 天然气地球科学, 2000, 11(4-5): 30 -44 .
[7] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[8] 马立祥;. 断层封闭性研究在烃类聚集系统分析中的意义[J]. 天然气地球科学, 2000, 11(3): 1 -8 .
[9] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[10] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .