天然气地球科学 ›› 2022, Vol. 33 ›› Issue (10): 1571–1584.doi: 10.11764/j.issn.1672-1926.2022.04.002

• 天然气地质学 • 上一篇    下一篇

准噶尔盆地吉木萨尔南部中上二叠统沉积古环境分析

刘兵兵1,2(),马东正3,秦臻1,2,王天海1,2,刘军1,2,陶辉飞1,4()   

  1. 1.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
    3.甘肃省地震局,甘肃 兰州 730000
    4.甘肃省油气资源研究重点实验室,甘肃 兰州 730000
  • 收稿日期:2022-01-04 修回日期:2022-04-02 出版日期:2022-10-20 发布日期:2022-09-28
  • 通讯作者: 陶辉飞 E-mail:liubingbing_wyyx@163.com;taohuifei2018@lzb.ac.cn
  • 作者简介:刘兵兵(1996-),男,河南洛阳人,硕士研究生,主要从事含油气盆地构造地质学研究. E-mail:liubingbing_wyyx@163.com.
  • 基金资助:
    甘肃省自然科学基金(18JR3RA396);中国科学院青年创新促进会项目(2016068)

Analysis of sedimentary paleoenvironment of Middle and Upper Permian in southern Jimsar, Junggar Basin: Evidence from biomarkers and elemental geochemistry of mudstone

Bingbing LIU1,2(),Dongzheng MA3,Zhen QIN1,2,Tianhai WANG1,2,Jun LIU1,2,Huifei TAO1,4()   

  1. 1.Northwest Institute of Eco?Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
    3.Gansu Earthquake Agency,Lanzhou 730000,China
    4.Key Laboratory of Petroleum Resources,Gansu Province,Lanzhou 730000,China
  • Received:2022-01-04 Revised:2022-04-02 Online:2022-10-20 Published:2022-09-28
  • Contact: Huifei TAO E-mail:liubingbing_wyyx@163.com;taohuifei2018@lzb.ac.cn
  • Supported by:
    The Natural Science Foundation of Gansu Province, China(18JR3RA396);the Project of Youth Innovation Promotion Association of CAS(2016068)

摘要:

准噶尔盆地东南缘吉木萨尔南部中上二叠统发育的泥页岩厚度大、分布广泛、有机质含量高,含有丰富的油气资源。通过对准噶尔盆地东南缘吉木萨尔南部中二叠统芦草沟组和上二叠统梧桐沟组进行了系统的采样,对泥页岩样品开展了生物标志化合物和元素地球化学分析,研究了该区中二叠统芦草沟组和上二叠统梧桐沟组泥页岩沉积时的氧化还原条件、古盐度和古气候特征。结果表明:①中二叠统芦草沟组沉积期处于贫氧的弱还原环境,有机质来源整体上以低等水生生物、沉水植物、原核生物等为主,芦草沟组中段混有少量高等植物输入;上二叠统梧桐沟组沉积期处于弱氧化—弱还原的环境,有机质来源整体上以低等水生生物、沉水植物、原核生物等为主,可能混有少量的高等植物,与芦草沟组相比有较多的沉水植物、泥炭藓、原核生物等;②中二叠统芦草沟组沉积时期湖盆为咸化—半咸化的水体,以干热的古气候条件为主;而上二叠统梧桐沟组沉积时期则为弱咸化—淡水的湖盆水体环境,以温暖湿润的古气候条件为主;③中二叠世至晚二叠世,研究区湖盆水体整体上呈现咸化程度降低,沉积有机质来源以低等水生生物、沉水植物、原核生物等为主,古气候呈由干热变为温暖湿润的演化趋势。

关键词: 准噶尔盆地, 二叠系, 沉积古环境, 生物标志化合物, 元素地球化学

Abstract:

The mudstone developed in Middle and Upper Permian in the southern Jimsar area of the Junggar Basin is thick and widely distributed, with high organic matter content and rich oil and gas resources. In this study, we carried out biomarker and elemental geochemical analysis on mudstone samples from the Middle Permian Lucaogou Formation and Upper Permian Wutonggou Formation in the southern Jimsar area. On this basis, we studied the redox conditions, paleo-salinity and paleoclimate characteristics of the Middle Permian Lucaogou Formation and Upper Permian Wutonggou Formation mudstone in the southern Jimsar area. The results show that: (1) The Middle Permian Lucaogou Formation was in a weak reducing environment, the sources of organic matter are mainly lower aquatic organisms, submerged plants, and prokaryotes. The middle section of the Lucaogou Formation may be mixed with a small amount of higher plants. The Upper Permian Wutonggou Formation was in a weak oxidation and weak reducing environment, the sources of organic matter are mainly lower aquatic organisms, submerged plants, and prokaryotes, possibly mixed with a small amount of higher plants. Compared with Lucaogou Formation, Wutonggou Formation seems to have more submerged plants, sphagnum, and prokaryotes. (2) During the depositional period of the Middle Permian Lucaogou Formation, it was a saline-brackish water environment, which was dominated by dry and hot paleoclimate conditions. However, during the depositional period of the Wutonggou Formation in the Upper Permian, it was a weak salinity-fresh water environment, which was dominated by warm and humid paleoclimate conditions. (3) From the Middle Permian to the Late Permian, the salinity of lake basin in the study area decreased, the paleoclimate changed from dry and hot to warm and humid. The sources of organic matter are mainly lower aquatic organisms, submerged plants, and prokaryotes.

Key words: Junggar Basin, Permian, Paleoclimate, Biomarker, Element geochemistry

中图分类号: 

  • TE122.1+13

图1

准噶尔盆地构造区划分(a)及研究区地层(b)"

图2

研究区中上二叠统地层柱状简图(a)及地层概况(b)"

表1

研究区芦草沟组和梧桐沟组泥页岩有机质特征"

样品编号

氯仿沥青“A”

(EOM)/%

总烃(HC)/10-6族组分/%
饱和烃芳香烃非烃沥青质
P3wt-30.12273.1621.582.1758.6017.65
P3wt-20.14178.977.945.0457.0429.98
P3wt-10.0578.709.797.1260.0923.00
P2lc-70.13445.9226.877.6051.9913.54
P2lc-60.11605.5154.332.155.8137.71
P2lc-50.06178.1821.608.4159.8810.11
P2lc-40.13196.3511.504.1859.5824.73
P2lc-30.13195.6810.384.1664.4321.02
P2lc-20.371 081.4226.162.8561.109.89
P2lc-10.18624.9528.825.0557.228.91

图3

研究区芦草沟组和梧桐沟组泥页岩饱和烃GC-MS总离子流分布特征"

表2

研究区芦草沟组和梧桐沟组泥页岩生物标志化合物特征参数"

样品

编号

主峰碳CPIΣnC21nC22+PaqPr/PhPr/nC17Ph/nC18规则甾烷/17α(H)-藿烷C27规则甾烷/∑甾烷C28规则甾烷/∑甾烷C29规则甾烷/∑甾烷规则甾烷C27/C29ααα20R伽马蜡烷/C30藿烷孕甾烷/C27规则甾烷
P3wt-3211.381.880.971.140.200.180.120.240.320.440.570.030.33
P3wt-2171.322.100.941.210.190.170.120.220.350.430.540.060.34
P3wt-1181.231.400.831.160.220.200.960.190.370.440.450.190.88
P2lc-7161.141.200.780.700.200.310.170.200.240.560.240.180.29
P2lc-6161.201.690.870.760.190.210.870.080.390.530.080.250.90
P2lc-5161.271.470.900.740.180.230.350.130.230.640.320.291.18
P2lc-4161.122.370.791.000.240.250.210.110.410.480.170.260.87
P2lc-3161.182.500.820.640.140.240.140.120.400.480.190.191.03
P2lc-2211.241.340.870.690.150.230.210.170.420.410.470.320.23
P2lc-1231.160.740.820.680.210.300.190.150.400.450.400.320.15
P3wt平均值1.311.790.911.170.200.180.400.220.350.440.520.090.52
P2lc平均值1.191.620.840.740.190.250.310.140.360.510.270.260.66

图4

芦草沟组和梧桐沟组萜烷(m/z=191)、甾烷(m/z=217)质量色谱"

表3

古环境元素参数判别指标"

氧化还原条件V/CrNi/CoV/(V+Ni)U/ThδUCu/Zn
缺氧还原>4.25>7.0>0.84>1.25>1<0.21
弱氧化弱还原2.0~4.255.0~7.00.60~0.841.25~0.75~10.21~0.63
富氧氧化<2<5.0<0.6<0.75<1>0.63
古盐度Li/(μg/g)Sr/(μg/g)Ni/(μg/g)Ga/(μg/g)Sr/Ba古气候Sr/CuRb/Sr
咸水>150800~1 000> 40<8>1.0温暖湿润1.3~5.0
半咸水90~150500~80025~408~170.6~1.0干热>5.0
淡水<90100~50020~25>17<0.6

表4

研究区芦草沟组和梧桐沟组泥页岩元素地球化学特征参数"

地层样品编号V/CrNi/CoV/(V+Ni)U/ThδUCu/ZnLi/(μg/g)Sr/(μg/g)Ni/(μg/g)Ga/(μg/g)Sr/BaSr/CuRb/Sr
P3wt-32.814.600.720.581.270.6820.81170.5628.4210.190.615.960.34
梧桐沟组P3wt-22.255.530.780.451.150.5539.51129.5028.0814.880.744.180.39
P3wt-12.512.810.750.851.440.6736.91443.8722.289.271.6713.280.12
P2lc-71.974.080.690.280.920.3627.3787.1843.4117.600.312.500.68
P2lc-62.462.210.810.691.350.7740.90476.1815.889.011.5714.520.12
P2lc-51.882.820.740.310.970.8732.12477.9316.659.292.2522.290.09
芦草沟组P2lc-42.313.480.740.341.000.9396.92565.3422.9010.771.4516.000.09
P2lc-32.322.860.830.421.120.8324.08632.9615.1111.681.8724.190.08
P2lc-22.673.880.750.541.240.5855.46415.9424.8110.311.5013.850.16
P2lc-11.803.700.750.351.030.5429.85325.6124.8313.340.999.910.18
平均值P3wt3.054.100.750.601.290.6332.41247.9726.2611.451.037.990.22
P2lc3.073.360.750.401.090.6243.82425.8823.3711.711.4013.970.13

图5

研究区芦草沟组和梧桐沟组泥页岩微量元素地球化学特征"

图6

规则甾烷与有机质来源关系[61]"

图7

芦草沟组和梧桐沟组泥页岩Pr/nC17—Ph/nC18关系[30]"

1 何登发,陈新发,张义杰,等. 准噶尔盆地油气富集规律[J]. 石油学报,2004,25(3):1-10.
HE D F,CHEN X F,ZHANG Y J,et al. Enrichment characteristics of oil and gas in Jungar Basin[J]. Acta Petrolei Sinica,2004,25(3):1-10.
2 匡立春,唐勇,雷德文,等. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力[J]. 石油勘探与开发,2012,39(6):657-667.
KUANG L C,TANG Y,LEI D W,et al. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock,Junggar Basin,NW China[J]. Petroleum Exploration and Development,2012,39(6):657-667.
3 陈磊,杨镱婷,汪飞,等. 准噶尔盆地勘探历程与启示[J]. 新疆石油地质,2020,41(5):505-518.
CHEN L,YANG Y T,WANG F,et al. Exploration history and enlightenment in Junggar Basin[J].Xinjiang Petroleum Geology,2020,41(5):505-518.
4 陈业全,王伟锋. 准噶尔盆地构造演化与油气成藏特征[J]. 石油大学学报(自然科学版),2004,28(3):4-8.
CHEN Y Q,WANG W F. Structural evolution and pool-forming in Junggar Basin[J]. Journal of the University of Petroleum (Edition of Natural Sciences),2004,28(3):4-8.
5 QIU Z,TAO H F,ZOU C N,et al. Lithofacies and organic geochemistry of the Middle Permian Lucaogou Formation in the Jimusar Sag of the Junggar Basin,NW China[J]. Journal of Petroleum Science and Engineering,2016,140:97-107.
6 林会喜,宋明水,王圣柱,等. 叠合盆地复杂构造带页岩油资源评价——以准噶尔盆地东南缘博格达地区中二叠统芦草沟组为例[J]. 油气地质与采收率,2020,27(2):7-17.
LIN H X,SONG M S,WANG S Z,et al. Shale oil resource evaluation in complex structural belt of superimposed basin:A case study of Middle Permian Lucaogou Formation in Bogda area, southeast margin of Junggar Basin[J]. Petroleum Geology and Recovery Efficiency,2020,27(2):7-17.
7 张逊,庄新国,涂其军,等. 准噶尔盆地南缘芦草沟组页岩的沉积过程及有机质富集机理[J]. 地球科学,2018,43(2):538-550.
ZHANG X,ZHUANG X G,TU Q J,et al. Depositional process and mechanism of organic matter accumulation of Lucaogou shale in southern Junggar Basin,Northwest China[J]. Earth Science,2018,43(2):538-550.
8 马东正. 准噶尔盆地东南缘中上二叠统烃源岩地球化学特征及构造背景[D]. 兰州:兰州大学,2019.
MA D Z. Geochemical Characteristics and Tectonic Settings of the Middle and Upper Permian Hydrocarbon Source Rocks in the Southeastern Margin of Junggar Basin[D].Lanzhou:Lan-zhou University,2019.
9 QU Y Q,TAO H F,MA D Z,et al. Biomarker characteristics and geological significance of Middle and Upper Permian source rocks in the southeastern Junggar Basin[J]. Petroleum Science and Technology,2019,37(3):1-15.
10 蒋中发,丁修建,王忠泉,等. 吉木萨尔凹陷二叠系芦草沟组烃源岩沉积古环境[J]. 岩性油气藏,2020,32(6):109-119.
JIANG Z F,DING X J,WANG Z Q,et al. Sedimentary paleoenvironment of source rocks of Permian Lucaogou Formation in Jimsar Sag[J]. Lithologic Reservoirs,2020,32(6):109-119.
11 史燕青,王剑,张国一,等. 新疆博格达地区中二叠世—早三叠世构造—气候—沉积演化及耦合机制[J]. 古地理学报,2021,23(2):389-404.
SHI Y Q,WANG J,ZHANG G Y,et al. Tectono-climatic-sedimentary evolution and coupling mechanism during the Middle Permian-Early Triassic in Bogeda area,Xinjiang[J]. Journal of Palaeogeography,2021,23(2):389-404.
12 史美超,雷国明,梁斌,等. 准南阜康地区中二叠统芦草沟组暗色泥岩地球化学特征及意义[J]. 新疆地质,2021,39(3):461-469.
SHI M C,LEI G M,LIANG B,et al. Characteristics and significance of dark mudstone geochemistry of Middle Permian Lucaogou Formation in Fukang area,southern Junggar Basin[J]. Xinjiang Geology,2021,39(3):461-469.
13 张明明. 基于生物地球化学的博格达山北麓二叠系芦草沟组含油页岩系中有机质聚集模型的建立[D]. 长春:吉林大学,2016.
ZHANG M M. Establishment of the Organic Matter Aggregation Models in the Oil Shale Bearing Series of Permian Lucaogou Formation in the Northern Bogda Mountain Based on Biogeochemistry[D]. Changchun:Jilin University,2016.
14 王炳凯,冯乔,田方正,等. 新疆准噶尔盆地南缘二叠系芦草沟组烃源岩生物标志化合物特征及意义[J]. 地质通报,2017,36(2-3):304-313.
WANG B K,FENG Q,TIAN F Z,et al. The characteristics and significance of biomarker compounds in the Permian Lucaogou Formation hydrocarbon source rock on the southern margin of the Junggar Basin[J]. Geological Bulletin of China,2017,36(2-3):304-313.
15 李锋,杜小弟,徐银波,等. 准东地区二叠系芦草沟组发育期古环境特点恢复的地球化学记录[J]. 石油地质与工程,2016,30(2):12-16.
LI F,DU X D,XU Y B,et al. Geochemical records of the restoration of paleo-environmental characteristics during the development of Permian Lucaogou Formation in eastern Junggar area[J].Petroleum Geology and Engineering,2016,30(2):12-16.
16 申华梁. 准噶尔盆地米东区芦草沟组沉积学研究及有机地球化学特征[D]. 成都:成都理工大学,2015.
SHEN H L. Research on Lucaogou Group Sedimentology in Midong District of Junggar Basin and Organic Geochemical Characteristics[D]. Chengdu:Chengdu University of Technology,2015.
17 熊志. 准噶尔盆地南缘中二叠统芦草沟组油页岩地球化学特征[D]. 西安:长安大学,2015.
XIONG Z. The Organic Geochemical Characteristics of Middle Permian Lucaogou Formation Oil Shale in the Southern Edge of Junggar Basin[D].Xi’an: Chang’an University,2015.
18 王东营,许浩,李婧婧,等. 博格达山北麓大黄山地区芦草沟组油页岩地球化学特征与沉积环境分析[J]. 内蒙古石油化工,2008(3):62-65.
WANG D Y,XU H,LI J J,et al. Analysis on the oil shale geochemical characteristics and sedimentary environments of Lucaogou Formation in Dahuangshan area[J]. Inner Mongolia Petrochemical Industry,2008(3):62-65.
19 但顺华,陈春勇,向辉,等. 吉木萨尔凹陷二叠系梧桐沟组沉积演化规律[J]. 新疆石油天然气,2018,14(2):17-22.
DAN S H,CHEN C Y,XIANG H,et al. Sedimentary evolution of the Permian Wutonggou Formation in Jimusaer Sag,Junggar Basin[J]. Xinjiang Oil & Gas,2018,14(2):17-22.
20 谭强,张小红,岳红星,等. 准噶尔盆地吉木萨尔凹陷北部二叠系梧桐沟组沉积模式研究[J]. 新疆石油天然气,2018,14(4):1-7.
TAN Q,ZHANG X H,YUE H X,et al. Study on sedimentary model of Permian Wutonggou Formation in northern Jimusaer Sag,Junggar Basin[J]. Xinjiang Oil & Gas,2018,14(4):1-7.
21 朱键. 吉木萨尔凹陷东部二叠系梧桐沟组沉积相研究[D]. 武汉:长江大学,2013.
ZHU J. Research of Sedimentary Facies of the Permian Wutonggou Formation of Jimusar Sag, Eastern in Junggar Basin[D]. Wuhan: Yangtze University,2013.
22 楼章华,金爱民,唐忠华,等. 气候、构造演化在大龙沟仓房沟群沉积环境演化过程中的响应[J]. 浙江大学学报(理学版),2002,29(4):464-469.
LOU Z H,JIN A M,TANG Z H,et al. Response of the evolution of sedimentary environment to climate and tectonic evolution in Dalonggou area,Junggar Basin,Xinjiang Province[J]. Journal of Zhejiang University(Science Edition),2002,29(4):464-469.
23 冯乔,李海斌,周海峰,等. 准噶尔盆地东南缘西大龙口梧桐沟组—锅底坑组烃源岩地球化学特征[J]. 山东科技大学学报(自然科学版),2017,36(2):1-10.
FENG Q,LI H B,ZHOU H F,et al. Geochemical characteristics of hydrocarbon source rock in Wutonggou-Guodikeng Formation of West Dalongkou,Southeast of Junggar Basin[J]. Journal of Shandong University of Science and Technology(Natural Science),2017,36(2):1-10.
24 傅家谟,盛国英. 分子有机地球化学与古气候、古环境研究[J]. 第四纪研究,1992(4):306-320.
FU J M,SHENG G Y. Molecular organic geochemistry and its application to the study of paleoclimate and paleoenvironmentes[J]. Quaternary Sciences,1992(4):306-320.
25 腾格尔,刘文汇,徐永昌,等. 缺氧环境及地球化学判识标志的探讨——以鄂尔多斯盆地为例[J]. 沉积学报,2004,22(2):365-372.
TENGER,LIU W H,XU Y C,et al. The discussion on anoxic environments and its geochemical identifying indices[J]. Acta Sedimentologica Sinica,2004,22(2):365-372.
26 熊小辉,肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境,2011,39(3):405-414.
XIONG X H,XIAO J F.Geochemical indicators of sedimentary environments[J].Earth and Environment,2011,39(3):405-414.
27 谢建磊,赵宝成,战庆,等. 元素地球化学在古环境和古生态研究中的应用综述[J]. 上海国土资源,2015,36(3):64-70.
XIE J L,ZHAO B C,ZHAN Q,et al. Review of geochemical applications for paleoenvironmental and paleoecological analyses[J]. Shanghai Land & Resources,2015,36(3):64-70.
28 BROOKS J D,GOULD K,SMITH J W. Isoprenoid hydrocarbons in coal and petroleum[J]. Nature,1969,222(5190):257-259.
29 POWELL T G,MCKIRDY D M. Relationship between ratio of pristane to phytane,crude oil composition and geological environment in Australia[J]. Nature Physical Science,1973,243(124):37-39.
30 HUNT J M. Petroleum Geochemistry and Geology[M]. New York:W. H. Freeman and Company,1995.
31 傅家谟,盛国英,许家友,等. 应用生物标志化合物参数判识古沉积环境[J]. 地球化学,1991,20(1):1-12.
FU J M,SHENG G Y,XU J Y,et al. Application of biomarker compounds in assessment of paleoenvironments of Chinese terrestrial sediments[J]. Geochimica,1991,20(1):1-12.
32 PETERS K E,WALTERS C C,MOLDOWN J M. The Biomarker Guide[M]. Cambridge:Cambridge University Press,2005.
33 NICKEL E. Lakes-chemistry,geology,physics[J]. Engineering Geology,1981,17(1-2):72-74.
34 常华进,储雪蕾,冯连君,等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评,2009,55(1):91-99.
CHANG H J,CHU X L,FENG L J,et al. Redox sensitive trace elements as paleoenvironments proxies[J].Geological Review,2009,55(1):91-99.
35 TAO H F,QIU Z,JI H J,et al. An integrated approach to understanding the depositional environment and organic matter enrichment factor in Carboniferous source rocks,Junggar Basin,NW China[J]. Geological Journal,2020,55(1):31-43.
36 林晓慧,詹兆文,邹艳荣,等. 准噶尔盆地东南缘芦草沟组油页岩元素地球化学特征及沉积环境意义[J].地球化学,2019,48(1):67-78.
LIN X H,ZHAN Z W,ZOU Y R,et al. Elemental geochemical characteristics of the Lucaogou Formation oil shale in the southeastern Junggar Basin and its depositional environmental implications[J]. Geochimica,2019,48(1):67-78.
37 金秉福,林振宏,季福武. 海洋沉积环境和物源的元素地球化学记录释读[J]. 海洋科学进展,2003,21(1):99-106.
JIN B F,LIN Z H,JI F W. Interpretation of element geochemical records of marine sedimentary environment and provenance[J]. Advances in Marine Science,2003,21(1):99-106.
38 蔡忠贤,陈发景,贾振远. 准噶尔盆地的类型和构造演化[J]. 地学前缘(中国地质大学,北京),2000,7(4):431-440.
CAI Z X,CHEN F J,JIA Z Y. Types and tectonic evolution of Junger Basin[J]. Earth Science Frontiers(China University of Geosciences,Beijing),2000,7(4):431-440.
39 吴孔友,查明,王绪龙,等. 准噶尔盆地构造演化与动力学背景再认识[J]. 地球学报,2005,26(3):217-222.
WU K Y,ZHA M,WANG X L,et al. Further researches on the tectonic evolution and dynamic setting of the Junggar Basin[J]. Acta Geoscientica Sinica,2005,26(3):217-222.
40 方世虎,贾承造,郭召杰,等. 准噶尔盆地二叠纪盆地属性的再认识及其构造意义[J]. 地学前缘,2006,13(3):108-121.
FANG S H,JIA C Z,GUO Z J,et al. New view on the Permian evolution of the Junggar Basin and its implications for tectonic evolution[J]. Earth Science Frontiers,2006,13(3):108-121.
41 张义杰,齐雪峰,程显胜,等. 准噶尔盆地晚石炭世和二叠纪沉积环境[J]. 新疆石油地质,2007,28(6):673-675.
ZHANG Y J,QI X F,CHENG X S,et al. Approach to sedimentary environment of Late Carboniferous-Permian in Junggar Basin[J]. Xinjiang Petroleum Geology,2007,28(6):673-675.
42 BIAN W H,HORNUNG J,LIU Z H,et al. Sedimentary and palaeoenvironmental evolution of the Junggar Basin,Xinjiang,Northwest China[J].Palaeobiodiversity and Palaeoenvironmen-ts,2010,90(3):175-186.
43 CARROLL A R,GRAHAM S A,SMITH M E. Walled sedimentary basins of China[J].Basin Research,2010,22(1):17-32.
44 王家林,吴朝东,朱文,等. 准噶尔盆地南缘二叠纪—三叠纪构造—沉积环境与原型盆地演化[J]. 古地理学报,2016,18(4):643-660.
WANG J L,WU C D,ZHU W,et al. Tectonic-depositional environment and prototype basin evolution of the Permian-Triassic in southern Junggar Basin[J].Journal of Palaeogeography,2016,18(4):643-660.
45 童勤龙,刘德长,张川. 新疆吉木萨尔西大龙口地区航空高光谱油气探测[J]. 石油学报,2017,38(4):425-435.
TONG Q L,LIU D C,ZHANG C. Airborne hyperspectral exploration in the west Dalongkou area,Jimusar,Xinjiang[J]. Acta Petrolei Sinica,2017,38(4):425-435.
46 VOLKMAN J K. Biological marker compounds as indicators of the depositional environments of petroleum source rocks[J]. Geological Society London Special Publications,1988,40(1):103-122.
47 陈义才,沈忠民,罗小平. 石油与天然气有机地球化学[M]. 北京:科学出版社,2007.
CHEN Y C,SHEN Z M,LUO X P. Organic Geochemistry of Oil and Gas[M]. Beijing:Science Press,2007.
48 HATCH J R,LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistey of the Upper Pennaylvanian (Missourian) stark shale member of the Dennis limestone,Wabaunsee County,Kansas,USA[J]. Chemical Geology,1992,99(1-3):65-82.
49 JONES B,MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J].Chemical Geology,1994,111(1-4):111-129.
50 LERMAN A. Lakes-Chemistry,Geology,Physics[M]. New York, Berlin, Heidelberg:Springer-Verlag,1978.
51 ELDERFIELD H,PAGETT R. Rare earth elements in ichthyoliths:Variations with redox conditions and depositional environment[J].Science of the Total Environment,1986,49:175-197.
52 刘刚,周东升. 微量元素分析在判别沉积环境中的应用——以江汉盆地潜江组为例[J]. 石油实验地质,2007,29(3):307-310.
LIU G,ZHOU D S. Application of microelements analysis in identifying sedimentary environment-Taking Qianjiang Formation in the Jianghan Basin as an example[J]. Petroleum Geology & Experiment,2007,29(3):307-310.
53 宋明水. 东营凹陷南斜坡沙四段沉积环境的地球化学特征[J]. 矿物岩石,2005,25(1):67-73.
SONG M S. Sedimentary environment geochemistry in the Shasi section of southern ramp,Dongying Depression[J]. Journal of Mineralogy and Petrology,2005,25(1):67-73.
54 梅水泉. 岩石化学在湖南前震旦系沉积环境及铀来源研究中的应用[J]. 湖南地质,1988,7(3):25-31.
MEI S Q. Application of rock chemistry in the study of Presinian sedimentary environment and the source of uranium mineralization in Hunan Province[J]. Hunan Geology,1988,7(3):25-31.
55 CRANWELL P A. Lipid geochemistry of sediments from Upton Broad,a small productive lake[J]. Organic Geochemistry,1984,7(1):25-37.
56 VISO A C,PESANDO D,BERNARD P,et al. Lipid components of the Mediterranean seagrass Posidonia Oceanica[J]. Phytochemistry,1993,34(2):381-387.
57 FICKEN K J,LI B,SWAIN D L,et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J].Organic Geochemistry,2000,31(7-8):745-749.
58 NOTT C J,XIE S C,AVSEJS L A,et al. n-Alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation[J]. Organic Geochemistry,2000,31(2-3):231-235.
59 NICHOLS J E,BOOTH R K,JACKSON S T,et al. Paleohydrologic reconstruction based on n-alkane distributions in ombrotrophic peat[J].Organic Geochemistry,2006,37(11):1505-1513.
60 TISSOT B P,WELTE D H. Petroleum Formation and Occurrence[M].New York,Berlin,Heidelberg:Springer-Verlag,1984.
61 HUANG W Y,MEINSCHEIN W. Sterols as ecological indicators[J].Geochimica et Cosmochimica Acta,1979,43(5):739-745.
62 AZZAM B,MOHD S I,MAMAN H,et al. Biomarker characteristics of Montney source rock,British Columbia,Canada[J]. Heliyon,2021,7(11):1-14.
63 梅博文,刘希江. 我国原油中异戊间二烯烷烃的分布及其与地质环境的关系[J]. 石油与天然气地质,1980,1(2):99-115.
MEI B W,LIU X J. The distribution of isoprenoid alkanes in China's crude oil and its relation with the geology environment[J]. Oil & Gas Geology,1980,1(2):99-115.
64 BRASSELL S C,EGLINTON G,MO F J. Biological marker compounds as indicators of the depositions!history of the Mao-ming oil shale[J]. Organic Geochemistry,1986,10(4-6):927-941.
65 DIDYK B,SIMONEIT B,BRASSELL S,et al. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J]. Nature,1978,272(5650):216-222.
66 CALVERT S E,PEDERSEN T F. Geochemistry of recent oxic and anoxic marine sediments:Implications for the geological record[J]. Marine Geology,1993,113(1-2):67-88.
67 DEAN W E,GARDNER J V,PIPER D Z. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin[J]. Geochimica et Cosmochimica Acta,1997,61(21):4507-4518.
68 ELDERFIELD H,GREAVES M J. The rare earth elements in seawater[J]. Nature,1982,296(5854):214-219.
69 HAVEN H L T,LEEUW J W D,PEAKMAN T M,et al. Anomalies in steroid and hopanoid maturity indices[J]. Geochimica et Cosmochimica Acta,1986,50(5):853-855.
70 张立平,黄第藩,廖志勤. 伽马蜡烷——水体分层的地球化学标志[J]. 沉积学报,1999,17(1):136-140.
ZHANG L P,HUANG D F,LIAO Z Q. Gammacerane-geochemical indicator of water column stratification[J]. Acta Sedimentologica Sinica,1999,17(1):136-140.
71 王志勇,卫延召,赵长毅. 三塘湖盆地低熟油的发现及其地球化学特征[J]. 沉积学报,2001,19(4):598-604.
WANG Z Y,WEI Y Z,ZHAO C Y. The immature oils in Santanghu Basin[J].Acta Sedimentologica Sinica,2001,19(4): 598-604.
[1] 张力文,吴陈君,黄道军,文志刚,赵伟波,席颖洋,张辉,孙璐,宋换新. 鄂尔多斯盆地东部石炭系本溪组泥页岩地球化学特征及沉积环境[J]. 天然气地球科学, 2022, 33(9): 1485-1498.
[2] 李科亮,王建强,刘文汇,陈容涛,裴立新,陈晓艳,邓辉,彭恒. 渤海西南部石炭系—二叠系残存特征及生烃物质基础[J]. 天然气地球科学, 2022, 33(7): 1091-1101.
[3] 崔晨光,张辉,刘文香,李仕芳,刘燕,宋换新,吴陈君,文志刚. 鄂尔多斯盆地东部本溪组一段泥页岩元素地球化学特征[J]. 天然气地球科学, 2022, 33(6): 1001-1012.
[4] 费李莹, 王仕莉, 苏昶, 刘钰, 江祖强, 杨梦云, 李勇广, 彭海军. 准噶尔盆地盆1井西凹陷东斜坡侏罗系三工河组油气成藏特征及控制因素[J]. 天然气地球科学, 2022, 33(5): 708-719.
[5] 曹正林, 李攀, 王瑞菊. 准噶尔盆地玛湖凹陷P—T转换期层序结构、坡折发育及油气地质意义[J]. 天然气地球科学, 2022, 33(5): 807-819.
[6] 李依林, 伏美燕, 邓虎成, 刘四兵, 胥旺, 吴冬. 滨岸闭塞环境中有机质富集模式——以川西南峨边葛村剖面筇竹寺组为例[J]. 天然气地球科学, 2022, 33(4): 588-604.
[7] 刘嘉伟,赵虎,王轶,张文锦,陈康,邸志欣. 川东龙会场—龙门地区二叠系火山岩分布特征及油气地质意义[J]. 天然气地球科学, 2022, 33(3): 381-395.
[8] 张琴,邱振,张磊夫,王玉满,肖玉峰,刘丹,刘雯,李树新,李星涛. 海陆过渡相页岩气储层特征与主控因素——以鄂尔多斯盆地大宁—吉县区块二叠系山西组为例[J]. 天然气地球科学, 2022, 33(3): 396-407.
[9] 孟颖, 靳军, 高崇龙, 李际, 刘明, 刘可, 王柯, 任影, 邓毅. 准噶尔盆地南缘西段白垩系深层储层特征及物性保存机制[J]. 天然气地球科学, 2022, 33(2): 218-232.
[10] 施辉, 李宗星, 彭博, 孙玉琦, 张浩, 杨元元, 胡俊杰, 方欣欣, 魏小洁. 柴东欧南凹陷上石炭统克鲁克组构造背景、物质来源及沉积环境[J]. 天然气地球科学, 2022, 33(10): 1554-1570.
[11] 李二庭, 米巨磊, 周波, 马聪, 陈世加, 张晓刚, 刘翠敏. 准噶尔盆地莫索湾地区白垩系生物降解与成藏地球化学特征[J]. 天然气地球科学, 2021, 32(9): 1384-1392.
[12] 刘刚, 李建忠, 齐雪峰, 朱明, 袁波, 庞志超. 准噶尔盆地南缘西段下部成藏组合油气藏形成过程[J]. 天然气地球科学, 2021, 32(7): 1009-1021.
[13] 刘洪军, 杜治利, 陈夷, 田娅, 张蓬勃, 王凤琴. 武威盆地武地1井石炭系烃源岩地球化学特征及地质意义[J]. 天然气地球科学, 2021, 32(7): 1061-1072.
[14] 邹妞妞, 张大权, 史基安, 鲁新川, 张顺存. 准噶尔盆地中拐凸起二叠系上乌尔禾组油气成藏及其主控因素[J]. 天然气地球科学, 2021, 32(4): 540-550.
[15] 钱海涛, 苏东旭, 阿布力米提·依明null, 王学勇, 李宗浩, 王国栋. 准噶尔盆地盆1井西凹陷斜坡区油气地质特征及勘探潜力[J]. 天然气地球科学, 2021, 32(4): 551-561.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郑爱玲;王新海;江山;张晓红;. 煤层多元气体相互作用与替代机理研究方向[J]. 天然气地球科学, 2004, 15(4): 352 -354 .
[2] 王晓锋, 徐永昌, 沈平, 郑建京, 史宝光. 低熟气地球化学特征与判识指标[J]. 天然气地球科学, 2010, 21(1): 1 -6 .
[3] 陶伟, 邹艳荣, 刘金钟, 张馨, 张长春. 压力对粘土矿物催化生烃的影响[J]. 天然气地球科学, 2008, 19(4): 548 -552 .
[4] 何家雄,崔洁,翁荣南,祝有海,黄霞,谢奇勋,龚晓峰. 台湾南部泥火山与伴生气地质地球化学特征及其油气地质意义[J]. 天然气地球科学, 2012, 23(2): 319 -326 .
[5] 赵靖舟. 非常规油气有关概念、分类及资源潜力[J]. 天然气地球科学, 2012, 23(3): 393 -406 .
[6] 戴金星. 天然气碳氢同位素特征和各类天然气鉴别[J]. 天然气地球科学, 1993, 4(2、3): 1 -40 .
[7] 周庆华,宋宁,王成章,李博,王先德,彭传圣,任玉秀. 湖南花垣页岩气区块地质评价与勘探展望[J]. 天然气地球科学, 2014, 25(1): 130 -140 .
[8] 周庆华,宋宁,王成章,李博,车建炜,彭传圣,许江桥. 湖南常德地区牛蹄塘组页岩特征及含气性[J]. 天然气地球科学, 2015, 26(2): 301 -311 .
[9] 耳闯,赵靖舟,王芮,魏之焜. 沉积环境对富有机质页岩分布的控制作用——以鄂尔多斯盆地三叠系延长组长7油层组为例[J]. 天然气地球科学, 2015, 26(5): 823 -832,892 .
[10] 吴陈君,张明峰,孙丽娜,刘艳,妥进才. 渝东南地区寒武系牛蹄塘组页岩气成因探讨[J]. 天然气地球科学, 2015, 26(8): 1481 -1487 .