天然气地球科学 ›› 2022, Vol. 33 ›› Issue (9): 1499–1508.doi: 10.11764/j.issn.1672-1926.2022.03.009

• 天然气开发 • 上一篇    下一篇

柴达木盆地多层边水疏松砂岩气藏开采实验

胡勇1(),李熙喆1(),江良冀1(),万玉金1,郭长敏1,焦春艳1,柴小颖2,敬伟2,徐轩1,周梦飞1,3,贾玉泽1,3   

  1. 1.中国石油勘探开发研究院,北京 100083
    2.中国石油青海油田公司勘探开发研究院,甘肃 敦煌 736202
    3.中国科学院大学,北京 100190
  • 收稿日期:2021-11-22 修回日期:2022-03-08 出版日期:2022-09-10 发布日期:2022-09-09
  • 通讯作者: 李熙喆,江良冀 E-mail:huy69@petrochina.com.cn;lxz69@petrochina.com.cn;jiangliangj69@petrochina.com.cn
  • 作者简介:胡勇(1978-),男,重庆黔江人,高级工程师,博士,主要从事天然气开发实验与基础理论应用研究.E-mail: huy69@petrochina.com.cn.
  • 基金资助:
    国家科技重大专项“疏松砂岩气藏长期稳产技术”(2016ZX05015-004);中国石油集团公司重大专项“大型碳酸盐岩气田控水提高采收率技术研究”(2021DJ15)

Production experiment of multi-layer edge-water loose sandstone gas reservoir in Qaidam Basin

Yong HU1(),Xizhe LI1(),Liangji JIANG1(),Yujin WAN1,Changmin GUO1,Chunyan JIAO1,Xiaoying CHAI2,Wei JING2,Xuan XU1,Mengfei ZHOU1,3,Yuze JIA1,3   

  1. 1.PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China
    2.Exploration and Development Research Institute,PetroChina Qinghai Oilfield Company,Dunhuang 736202,China
    3.University of Chinese Academy of Sciences,Beijing 100190,China
  • Received:2021-11-22 Revised:2022-03-08 Online:2022-09-10 Published:2022-09-09
  • Contact: Xizhe LI,Liangji JIANG E-mail:huy69@petrochina.com.cn;lxz69@petrochina.com.cn;jiangliangj69@petrochina.com.cn
  • Supported by:
    The China National Science & Technology Major Project(Grand 2016ZX05015-004);the Major Project of CNPC(Grand 2021DJ15)

摘要:

以柴达木盆地第四系疏松砂岩气藏为研究对象,根据气藏纵向多层强非均质、边水活跃等特征,建立多层边水水侵气藏开采物理模拟实验方法。选用气藏天然岩心进行“串并联”组合构建实验模型再现气藏多层地质特征,通过室内仿真模拟气藏衰竭开采全过程,实现气藏无水侵、水侵无绕流和水侵绕流3种情景下一井四层合采生产模拟研究。可视化监测恒压边水水体沿不同渗透率储层水侵过程,分析了气井配产大小对水侵路径及水侵前缘推进速度的影响,明确了边水非均匀水侵发生后对气藏产能、采收率以及残余气赋存特征的影响,揭示了该类气藏边水沿高渗层非均匀突进和水封气形成的机理,为该类气田制定合理控水开发措施提供依据。

关键词: 柴达木盆地, 疏松砂岩气藏, 多层合采, 水侵规律, 开发机理, 物理模拟

Abstract:

The Quaternary unconsolidated sandstone gas reservoir in the Qaidam Basin is characterized by multiple layers, strong heterogeneity and active edge-water. Based on these characteristics, a physical simulation experiment method for production from multi-layer edge-water gas reservoirs was proposed. In this method,the experimental models were established by using natural cores in series and parallel connection to show geological characteristics of multi-layer gas reservoirs. According to the indoor simulation results of the whole depletion production process,an experimental study on four layers commingled production in one well was conducted under three scenarios of gas reservoirs without the water invasion,with the water invasion without flow,and with the water invasion with flow. In this study,by visually monitoring the water invasion process of constant pressure edge water body along layers with different permeability,and quantitatively analyzing the influence of gas well production allocation on water invasion path and advancing speed of water invasion front,the influence of non-uniform edge water invasion on gas reservoir productivity,recovery factors and residual gas occurrence characteristics was clarified,and the mechanism of non-uniform edge-water invasion along high permeability layers and formation of water sealed gas were revealed. The findings of this study can provide a basis for reasonable water control for this type of gas fields.

Key words: Qaidam Basin, Loose sandstone gas reservoir, Multi-layer combined mining, Water intrusion law, Development mechanism, Physical simulation

中图分类号: 

  • TE37

图1

气藏多层合采水侵物理模拟实验流程[23]"

图2

纯气藏多层合采实验模型"

表1

纯气藏多层合采实验模型参数"

模型

组合

水体端(A端)井口端(B端)
岩心编号

孔隙度

/%

渗透率

/(10-3 μm2

长度/cm直径/cm编号

孔隙度

/%

渗透率

/(10-3 μm2

长度/cm直径/cm
一组1-126.62.014.9612.4691-226.22.284.9572.473
二组2-127.414.25.1472.4672-227.613.95.8312.468
三组3-128.630.05.2512.4163-230.831.54.6822.427
四组4-136.669.26.5893.7564-234.566.16.8433.768

图3

层间无绕流情景多层合采水侵模型"

表2

层间无绕流实验模型参数"

模型

组合

水体端(A端)井口端(B端)

岩心

编号

孔隙度

/%

渗透率/(10-3 μm2长度/cm直径/cm编号

孔隙度

/%

渗透率/(10-3 μm2长度/cm直径/cm
一组1-129.42.115.4852.3861-229.41.935.3352.355
二组2-132.25.715.2342.3062-233.65.375.1862.394
三组3-127.010.26.5483.7563-229.59.346.813.782
四组4-136.724.44.3752.4194-238.023.64.482.443

表3

层间绕流实验模型参数"

模型

组合

水体端(A端)井口端(B端)

岩心

编号

孔隙度

/%

渗透率/(10-3 μm2长度/cm直径/cm编号

孔隙度

/%

渗透率/(10-3 μm2长度/cm直径/cm
一组1-135.43.804.8212.4371-225.23.314.6212.452
二组2-127.812.34.5722.4822-227.111.04.2452.464
三组3-131.955.94.3572.4623-232.258.14.5272.465
四组4-130.71506.5893.7954-228.61626.7243.786

图4

层间绕流情景多层合采水侵模型"

图5

纯气藏多层合采物理模拟实验结果(配产20 mL/min)"

图6

水侵推进路径实时可视化监测(红色为水、白色为气)"

图7

不同配产对水侵推进速度的影响[23]"

表4

水侵前缘推进速度统计"

岩心

编号

不同配产条件下水侵前沿推进速度/(cm/min)
20 mL/min50 mL/min80 mL/min100 mL/min150 mL/min
4-10.641.141.51.712.19
3-10.600.921.211.43未突破
2-10.34未突破未突破未突破未突破
1-1未突破未突破未突破未突破未突破

图8

多层合采水侵无绕流推进规律模式示意"

图9

多层合采水侵无绕流物理模拟实验结果(配产20 mL/min)"

图10

水侵推进路径实时可视化监测(红色为水、白色为气)"

图11

多层合采水侵绕流推进规律模式示意"

图12

多层合采水侵绕流物理模拟实验结果(配产20 mL/min)"

图13

常规渗透率与束缚水饱和度下气相渗透率关系[23]"

图14

水侵模型和无水侵模型气藏采收率对比[23]"

表5

残余气实验结果"

同层两组岩心渗透率残余气比例/%
平均值/(10-3 μm220 mL/min80 mL/min150 mL/min
156.0293029
57.5293032
11.7323434
3.6353750
平均值313336

图15

疏松砂岩储层气水渗流启动压力[23]"

图16

不同配产条件下水体与不同渗透率储层之间压差[23]"

1 马力宁, 王小鲁, 朱玉洁, 等. 柴达木盆地天然气开发技术进展[J]. 天然气工业, 2007,27(2): 77-80,155.
MA L N, WANG X L, ZHU Y J, et al. Introduction of technology improvement on natural gas development in the Qaidam Basin[J]. Natural Gas Industry, 2007,27(2): 77-80,155.
2 孙永亮, 王小鲁, 王玉善, 等. 柴达木盆地台南气田边水水侵影响因素及剩余气分布特征研究[J]. 录井工程, 2020,31(2):106-112.
SUN Y L, WANG X L, WANG Y S, et al. Study on influence factors of edge water influx and distribution characteristics of remaining gas in Tainan Gas Field, Qaidam Basin[J]. Mud Logging Engineering, 2020, 31(2): 106-112.
3 许文平, 吴朝东, 关平, 等. 柴达木盆地第四系疏松砂岩天然气储层可动水预测方法研究[J]. 天然气地球科学, 2012, 23(5): 952-955.
XU W P, WU C D, GUAN P, et al. Prediction of free water in the unconsolidated sandstone reservoir in the Quaternary gas field, Qaidam Basin[J]. Natural Gas Geoscience, 2012, 23(5): 952-955.
4 曹光强, 李文魁, 姜晓华. 涩北气田整体治水思路探讨[J]. 西南石油大学学报(自然科学版), 2014,36(2): 114-120.
CAO G Q, LI W K, JIANG X H. Study on the comprehensive water control methods in Sebei Gas Field[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2014,36(2): 114-120.
5 邓勇, 杜志敏, 陈朝晖. 涩北气田疏松砂岩气藏出水规律研究[J]. 石油天然气学报(江汉石油学院学报), 2008,30(2): 336-338.
DENG Y,DU Z M,CHEN Z H.Research on water breakth-rough mechanism in the unconsolidated sandstone reservoir in the Sebei Gas Field[J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute),2008,30(2):336-338.
6 朱华银, 胡勇, 李江涛, 等. 柴达木盆地涩北多层气藏合采物理模拟[J].石油学报, 2013, 34(S1): 136-142.
ZHU H Y, HU Y, LI J T, et al. Physical simulation of commingled production for multilayer gas reservoir in Sebei Gas Field, Qaidam Basin[J]. Acta Petrolei Sinica, 2013, 34(S1): 136-142.
7 李熙喆,郭振华,胡勇,等. 中国超深层构造型大气田高效开发策略[J]. 石油勘探与开发, 2018, 45(1):111-118.
LI X Z, GUO Z H, HU Y, et al. Efficient development strategies for large ultra-deep structural gas fields in China[J]. Petroleum Exploration & Development, 2018, 45(1): 111-118.
8 罗万静, 万玉金, 王晓冬,等. 涩北气田多层合采出水原因及识别[J]. 天然气工业, 2009, 29(2): 86-88,141-142.
LUO W J,WAN Y J,WANG X D, et al. The reason and recognition of water production from commingling production in Sebei Gas Field[J]. Natural Gas Industry, 2009, 29(2): 86-88,141-142.
9 李熙喆, 罗瑞兰, 胡勇, 等.孔隙型砂岩储集层主流通道指数及矿场应用[J]. 石油勘探与开发, 2020, 47(5): 984-989.
LI X Z, LUO R L, HU Y, et al. Characteristics of main flow channel index in porous sandstone gas reservoir and its application[J]. Petroleum Exploration & Development,2020,47(5): 984-989.
10 李熙喆, 卢德唐, 罗瑞兰, 等. 复杂多孔介质主流通道定量判识标准[J]. 石油勘探与开发, 2019, 46(5): 943-949.
LI X Z, LU D T, LUO R L, et al. Quantitative criteria for identifying main flow channels in complex porous media[J]. Petroleum Exploration & Development, 2019, 46(5): 943-949.
11 PERSOFF P,PRUESS K. Two­phase flow visualization and relative permeability measurement in natural rough­walled rock fractures[J]. Water Resources Research, 1995,5(31): 1175-1186.
12 周克明,李宁,张清秀,等. 气水两相渗流及封闭气的形成机理实验研究[J].天然气工业,2002, 22(S1): 122-125.
ZHOU K M, LI N, ZHANG Q X, et al. Experimental research on gas-water two phase flow and confined gas formation mechanism[J]. Natural Gas Industry,2002,22(S1):122-125.
13 陈朝晖,谢一婷,邓勇.涩北气田疏松砂岩气藏微观气水驱替实验[J].西南石油大学学报(自然科学版),2013,35(4):139-144.
CHEN C H, XIE Y T, DENG Y. Experiment of microscopic displacement of gas and water in loose sandstone gas reservoir of Sebei[J].Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(4): 139-144.
14 沈伟军,李熙喆,刘晓华,等.裂缝性气藏水侵机理物理模拟[J].中南大学学报(自然科学版),2014,45(9):3283-3287.
SHEN W J, LI X Z, LIU X H, et al. Physical simulation of water influx mechanism in fractured gas reservoirs[J]. Journal of Central South University (Science and Technology), 2014,45(9):3283-3287.
15 FANG F F, SHEN W J, GAO S S, et al. Experimental study on the physical simulation of water invasion in carbonate gas reservoirs[J]. Applied Sciences,2017,697(7): 1-12.
16 胡勇, 李熙喆, 卢祥国, 等. 砂岩气藏衰竭开采过程中含水饱和度变化规律[J]. 石油勘探与开发, 2014, 41(6): 723-726.
HU Y, LI X Z, LU X G, et al. Varying law of water saturation in the depletion-drive development of sandstone gas reservoirs[J].Petroleum Exploration & Development,2014,41(6): 723-726.
17 胡勇,李熙喆,万玉金,等. 裂缝气藏水侵机理及对开发影响实验研究[J].天然气地球科学, 2016, 27(5): 910-917.
HU Y, LI X Z, WAN Y J, et al. The experimental study of water invasion mechanism in fracture and the influence on the development of gas reservoir[J]. Natural Gas Geoscience, 2016, 27(5): 910-917.
18 胡勇,李熙喆,李跃刚,等. 低渗致密砂岩气藏提高采收率实验研究[J]. 天然气地球科学, 2015, 26(11):2142-2148.
HU Y, LI X Z, LI Y G, et al. Enhanced gas recovery of the low permeability and tight sandstone gas reservoir[J]. Natural Gas Geoscience, 2015, 26(11):2142-2148.
19 胡勇, 李熙喆, 万玉金, 等. 致密砂岩气渗流特征物理模拟[J]. 石油勘探与开发, 2013, 40(5): 580-584.
HU Y, LI X Z, WAN Y J, et al. Physical simulation on gas percolation in tight sandstone[J]. Petroleum Exploration & Development, 2013, 40(5): 580-584.
20 KABIR C, PAREKH B, MUSTAFA M. Material-Balance Analysis of Gas Reservoirs with Diverse Drive Mechanisms [C]. SPE Annual Technical Conference and Exhibition, Houston, Texas, USA, 2015.
21 KABIR C, PAREKH B, MUSTAFA M. Material-balance analysis of gas and gas-condensate reservoirs with diverse drive mechanisms[J]. Journal of Natural Gas Science and Engineering, 2016, 32: 158-173.
22 PATACCHINI L. Peripheral water injection efficiency for material balance applications[J]. Journal of Petroleum Science and Engineering, 2017, 149: 720-739.
23 HU Y, LI X, SHEN W, et al. Study on the water invasion and its effect on the production from multilayer unconsolidated sandstone gas reservoirs[J]. Geofluids,2021,5135159. DOI:10.1155/2021/5135159.
[1] 李旋,赵俊峰,王迪,胡超,赵旭东,王科,管斌,张海龙. 柴达木盆地西部地区早—中侏罗世沉积体系与古气候环境探讨[J]. 天然气地球科学, 2022, 33(7): 1060-1073.
[2] 田继先, 纪宝强, 曾旭, 王晔桐, 李曜良, 孙国强. 柴北缘下干柴沟组深部碎屑岩储层发育特征及主控因素[J]. 天然气地球科学, 2022, 33(5): 720-730.
[3] 陆统智, 曾溅辉, 王濡岳, 伍坤宇, 曹喆, 王鑫, 梁晓宇, 李庆波, 郭正权. 柴达木盆地英西地区致密油成藏物理模拟实验[J]. 天然气地球科学, 2022, 33(2): 256-266.
[4] 胡勇, 贾玉泽, 何东博, 王继平, 李忠诚, 周梦飞, 魏克颖, 江良冀, 徐轩, 焦春艳, 郭长敏. 气藏储层非均质性表征方法及开采物理模拟实验[J]. 天然气地球科学, 2022, 33(2): 297-302.
[5] 田继先, 姜晓华, 国建英, 孔骅, 任世霞, 周飞, 沈晓双, 沙威, 乔柏翰, 张娜, 周胤男. 柴西湖相碳酸盐岩致密气藏地质特征及规模富集条件[J]. 天然气地球科学, 2021, 32(8): 1223-1234.
[6] 王晔桐, 孙国强, 张顺存, 陈波, 朱文军, 蒋赟. 柴北缘腹部砂岩中碳酸盐胶结物特征及成因探讨[J]. 天然气地球科学, 2021, 32(7): 1037-1046.
[7] 代全齐, 王贵文, 张连昌, 李纲, 马丽娟, 高树芳, 程志超, 张迪, 刘国良. 致密储层孔隙结构相测井表征及对经济可采储量的约束——以柴达木盆地英西地区湖相混积岩为例[J]. 天然气地球科学, 2021, 32(2): 308-318.
[8] 胡勇, 梅青燕, 王继平, 陈颖莉, 徐轩, 焦春艳, 郭长敏. 致密砂岩气藏井网加密优化[J]. 天然气地球科学, 2020, 31(9): 1326-1333.
[9] 刘世明, 唐书恒, 霍婷, 谭富荣, 刘达成, 王金喜. 柴达木盆地东缘上石炭统泥页岩孔隙结构及分形特征[J]. 天然气地球科学, 2020, 31(8): 1069-1081.
[10] 石迎爽, 梁冰, 薛璐, 孙维吉, 王青春, 程志恒. 煤层气多层合采井生产特征分析[J]. 天然气地球科学, 2020, 31(8): 1161-1167.
[11] 栾守亮. 柴达木盆地全吉剖面第四系七个泉组沉积特征及沉积模式[J]. 天然气地球科学, 2020, 31(6): 800-808.
[12] 韩伟, 刘文进, 李玉宏, 周俊林, 张文, 张云鹏, 陈晓宏, 黄斌. 柴达木盆地北缘稀有气体同位素特征及氦气富集主控因素[J]. 天然气地球科学, 2020, 31(3): 385-392.
[13] 蒋赟, 潘世乐, 秦彩虹, 蒋峥文, 朱文军, 张明峰, 孙国强. 柴达木盆地北缘平台地区下干柴沟组下段稀土元素特征及物源分析[J]. 天然气地球科学, 2020, 31(11): 1537-1547.
[14] 张晓宝, 周飞, 曹占元, 梁明亮. 柴达木盆地东坪氦工业气田发现及氦气来源和勘探前景[J]. 天然气地球科学, 2020, 31(11): 1585-1592.
[15] 吴因业, 吕佳蕾, 方向, 杨智, 王岚, 马达德, 陶士振. 湖相碳酸盐岩—混积岩储层有利相带分析——以柴达木盆地古近系为例[J]. 天然气地球科学, 2019, 30(8): 1150-1157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[3] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[4] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[5] Seewald J S;Benitez-Netson B C;Whelan J K(美国);刘全有(译). 天然气形成与组成的实验和理论因素[J]. 天然气地球科学, 2000, 11(4-5): 30 -44 .
[6] 马立祥;. 断层封闭性研究在烃类聚集系统分析中的意义[J]. 天然气地球科学, 2000, 11(3): 1 -8 .
[7] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[8] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[9] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[10] 廖成君. VSP技术在锦612复杂断块油藏开发部署研究中的应用[J]. 天然气地球科学, 2005, 16(1): 117 -122 .