天然气地球科学 ›› 2022, Vol. 33 ›› Issue (6): 843–859.doi: 10.11764/j.issn.1672-1926.2022.01.016

• 非常规天然气 •    下一篇

四川盆地及其周缘海相页岩有机质炭化区分布规律与主控因素浅析

王玉满1(),魏国齐1,沈均均2,邱振1,李新景1,张琴1,张磊夫1,王灿辉2,刘雯1   

  1. 1.中国石油勘探开发研究院,北京 100083
    2.长江大学,湖北 武汉 430100
  • 收稿日期:2021-12-24 修回日期:2022-01-27 出版日期:2022-06-10 发布日期:2022-06-28
  • 作者简介:王玉满(1968-),男,湖北荆门人,高级工程师,博士,主要从事沉积储层与非常规油气地质研究. E-mail: wangyuman@petrochina.com.cn.
  • 基金资助:
    中国石油科技项目“海相页岩气勘探开发技术研究”(2021DJ1904);中国石油勘探与生产分公司海相页岩气选区课题(kt2018-01-06)

Analysis on carbonization distribution and main controlling factors of organic matter in marine shale in Sichuan Basin and its periphery

Yuman WANG1(),Guoqi WEI1,Junjun SHEN2,Zhen QIU1,Xinjing LI1,Qin ZHANG1,Leifu ZHANG1,Canhui WANG2,Wen LIU1   

  1. 1.PetroChina Research Institute of Petroleum Exploration and Development,Beijing 100083,China
    2.Yangtze University,Wuhan 430100,China
  • Received:2021-12-24 Revised:2022-01-27 Online:2022-06-10 Published:2022-06-28
  • Supported by:
    The PetroChina Scientific and Technological Project(2021DJ1904);the Marine Shale Gas Selection Project of PetroChina Exploration & Production Company(kt2018-01-06)

摘要:

高过成熟海相页岩有机质炭化点(区)的分布规律和主控因素是页岩气勘探面临的重要课题。围绕四川盆地及其周缘下寒武统和下志留统页岩分布区,以重点炭化区精细解剖为基础,开展了2套页岩有机质炭化区精细预测和热成熟度区域编图,探索海相页岩有机质炭化区分布规律和主控因素。研究认为:①在下志留统页岩分布区,存在川东—鄂西、鄂西北部、川南西部和仁怀—渝西南4个有机质炭化区,面积近40 000 km2,其中川南西部炭化区主体位于峨眉玄武岩分布区。②在下寒武统页岩分布区,有机质炭化区面积占比超过80%,非炭化区仅分布于威远—资阳、磨溪—高石梯、长阳和瓮安—镇远等4个区块,面积约为62 600 km2。③峨眉火成岩省为晚二叠世的极热事件,使得川南西部下志留统和下寒武统页岩热成熟度RO值分别增加0.2%~0.4%和0.2%~1.0%。马边—峨边位于峨眉玄武岩厚度高值区,也是下寒武统和下志留统页岩有机质炭化程度最严重区域。④下寒武统和下志留统页岩有机质炭化的主控因素既有相似之处,也存在一定差异。前者主控因素为长期的深埋背景,晚二叠世的极热事件仅使局部地区炭化程度更趋严重。后者主控因素相对复杂,在仁怀—渝西南、川东—鄂西、鄂西北3个地区受深埋背景控制,在川南西部则受深埋背景和晚二叠世的高地温作用双重控制。

关键词: 四川盆地, 下寒武统, 下志留统, 热成熟度, 有机质炭化, 低电阻率响应, 峨眉火成岩省

Abstract:

The distribution and main controlling factors of organic matter carbonization points (zones) of over-mature marine shale are important issues for shale gas exploration. This paper focuses on the Lower Cambrian and Lower Silurian shale in the Sichuan Basin and its periphery. Based on the detailed anatomy of key carbonization areas, predictions of shale organic matter carbonization areas and regional mapping of thermal maturity are carried out to explore and reveal the distribution and main controlling factors of the carbonization zones of organic matter in the two sets of shales.Four preliminary conclusions were obtained:(1)In the Lower Silurian shale distribution area,there are four organic matter carbonization zones,namely,eastern Sichuan-western Hubei, nor-thwestern Hubei,southern Sichuan and Renhuai-southwestern Chongqing,covering an area of nearly 40 000 km2,of which the main part of the western carbonization zone in southern Sichuan is located in the Emei basalt distribution area. (2)In the Lower Cambrian shale distribution area, the organic carbonization area accounts for more than 80%. The non-carbonization area is only distributed in Weiyuan-Ziyang, Moxi-Gaoshiti, Changyang and Weng'an-Zhenyuan with an area of about 62 600 km2. (3)The Emei igneous rock event was an extreme heat event in the Late Permian, which increased the thermal maturity RO value of the Lower Silurian and Lower Cambrian shale in the western part of southern Sichuan by 0.2%-0.4% and 0.2%-1.0%, respectively. Mabian-Ebian is located in the high-value area of the Emei basalt thickness, and is also the area with the highest degree of carbonization of organic matter in the Lower Cambrian and Lower Silurian shale. (4)The main controlling factors of organic matter carbonization of the Lower Cambrian and Lower Silurian shale have similarities and differences. The main controlling factor of the former is the long-term deep burial background, and the extremely thermal event in the Late Permian only made the degree of carbonization in some areas more serious.The latter’s main controlling factors are relatively complex, and are controlled by deep burial background in the three regions of Renhuai-southwestern Chongqing, eastern Sichuan-western Hubei, and northwestern Hubei. In western Sichuan, it was controlled by deep burial background and high ground temperature in Late Permian.

Key words: Sichuan Basin, Lower Cambrian, Lower Silurian, Thermal maturity, Carbonification of organic matters, Low resistance response, Emei igneous rock province

中图分类号: 

  • TE122.1

图1

四川盆地热岩石圈厚度与重要资料点分布图注:热岩石圈为岩石圈上地幔段某个特定等温面以上的热传导层[8-10],等值线根据文献[10]修改"

图2

峨边黑竹沟龙马溪组综合柱状图注:LM5-Coronograptus cyphus带,LM6-Demirastrites triangulatus带,LM7-Lituigrapatus convolutus带,下同;GR值采用手持式HD2000伽马仪测得,单位为计算率/秒,即CPS,下同"

图3

川南龙马溪组典型炭化区有机质激光拉曼图谱(a)峨边黑竹沟,峰间距为249.94~260.02 cm-1,峰高比为0.84~1.05,RO=3.74%~3.98%(平均为3.90%); (b)马边长河碥,峰间距255.12~272.57 cm-1,峰高比为0.91~0.98,RO=3.82%~3.90%(平均为3.86%); (c)JYT1井,峰间距为267.0~274.0 cm-1,峰高比为0.61~0.70,RO=3.47%~3.57%(平均为3.51%); (d)B1井,峰间距为266.77~270.30 cm-1,峰高比为0.86~0.88,RO=3.76%~3.78%"

表1

川南西部峨眉火山岩厚度统计"

区块上二叠统火山岩厚度/m参考资料
绥江—永善221~341文献[11
盐津295~345文献[12-13
屏山50~100文献[14
天宫堂100~150文献[15
沐川120~160文献[16
峨边250~350文献[14
马边360~700文献[17
雷波430~560文献[17
威信石子沟300文献[18
珙县西81.2文献[11
水富160文献[11

图4

渝西南JYT1井五峰组—龙马溪组综合柱状图注: WF2为Dicellograptus complexus带;WF4为Normalograptus extraordinarius带;O3g为Hirnantia,LM1-Normalograptus persculptus带;LM4为Cystograptus vesiculosus带"

表2

渝西南JYT1井龙马溪组测试数据"

井深/mTOC/%测井电阻率/(Ω·m)实验测试项目
干样电阻率/(Ω·m)核磁孔隙度/%拉曼RO/%
4 314.94.296.5~7.542.14.0(3.49~3.57)/3.52
4 317.03.935.8~6.532.44.2(3.47~3.54)/3.51

表3

四川盆地及周边龙马溪组主要炭化区地质参数(引自文献[7,20])"

井号/剖面区块埋深/mTOC/%拉曼RO/%孔隙度/%自然伽马 /API电阻率 /(Ω·m)含气量/(m3/t)有机质炭化程度保存条件
LY1鄂西2 790~2 8301.1~6.03.56~3.73

(1.90~4.77)

/2.76

150~2700.1~0.90.13~0.48严重炭化

盆外向斜区,

保存条件较好

HY1鄂西2 142~2 1661.5~5.33.80~4.00150~270

(0.01~0.30)

/0.2

微气严重炭化

盆外向斜区,

保存条件较好

X202川东北1 965~1 9890.5~6.43.48~3.51

(2.40~8.78)

/3.85

145~3003~71.38~3.00, 试产为微气弱炭化盆外褶皱带,龙马溪组具自封盖性,保存条件中等
TY1川东>3 9002.0~5.03.50~3.55150~350(2~6)/4微气,压力系数 小于1弱炭化

盆地内,保存

条件好

YYY1

川南

西部

2 900~3 0701.9~9.03.6~3.9120~2500.12~0.3<0.2严重炭化

盆内向斜区,

保存条件较好

Y201

川南

西部

3 500~3 6603.60~3.801.2160~3000.6~2严重炭化

位于盆地内,

保存条件好

RY1仁怀4 030~4 0551.9~6.53.50~3.60

(0.50~2.30)

/0.74

180~2501.8~8.00.51弱炭化

盆地内,保存

条件好

城口

明中

川东北露头1.7~6.1

(0.26~2.63)

/0.80

180~521弱炭化

位于盆地外,

保存条件差

巫溪

白鹿

川东北露头1.9~8.0

(0.66~1.58)

/1.05

180~310弱炭化

位于盆地外,

保存条件差

表4

四川盆地及其周缘下寒武统页岩重点露头剖面和钻井地质参数"

剖面/钻井区块层位地层厚度 /m埋深/m富有机质页岩基本地质参数有机质激光拉曼谱参数孔隙度/%含气量/(m3/t)有机质 炭化程度
厚度/mTOC/%

测井电阻率

/(Ω·m)

峰间距/cm-1峰高比拉曼RO/%
马边大风顶川南西部麦地坪组>402248.95~256.661.6~1.88(4.62~4.94)/4.70严重炭化
永善务基川南西部筇竹寺组37728(0.56~4.83)/2.80246.01~259.941.00~1.47(3.92~4.48)/4.20严重炭化
N206川南筇竹寺组2101 680~1 89440(1.90~7.11)/3.300.1~2.0(3.86~4.09)/3.90

(1.43~2.01)

/1.66

无气严重炭化
遵义松林中南村黔北筇竹寺组40>30(0.31~12.79)/4.92265.39~268.230.76~0.783.64~3.67严重炭化
湄潭梅子湾黔北牛蹄塘组>3223(1.08~7.17)/4.03266.810.713.40未炭化
瓮安永和黔北牛蹄塘组135111(0.56~8.26)/5.39256.870.673.10未炭化
镇远青溪黔北牛蹄塘组>11052.5(0.85~13.06)/4.92262.550.693.44未炭化
松桃响水洞黔北牛蹄塘组>100>30(1.34~12.01)/7.65263.97~272.480.78~0.89(3.67~3.80)/3.70严重炭化
古丈默戎湘西牛蹄塘组217>50(1.72~7.87)/5.4262.18~274.800.83~0.87(3.72~3.77)/3.75严重炭化
鹤峰白果坪鄂西水井沱组>200>30(1.38~9.11)/4.54249.56~253.770.94~1.10(3.86~4.04)/3.95严重炭化
峡东王家坪鄂西水井沱组26.6617.3(0.88~4.68)/3.33250.97~259.380.62~0.632.9~3.2未炭化
长阳白竹岭鄂西水井沱组152.355(1.23~9.06)/4.10274.80~277.610.67~0.703.55~3.58弱炭化
YT2鄂西水井沱组595 001~5 06033.0~6.03.50~3.55微气显示弱炭化
巫溪长丈村川东北筇竹寺组>200269.74~278.260.70~0.77(3.58~3.65)/3.62严重炭化
城口新军村川东北筇竹寺组300155(0.27~6.01)/2.23268.00~274.000.62~0.71(3.48~3.58)/3.53弱炭化
WT1川东北筇竹寺组1207 172~7 292241.2~2.03.60~3.80<2无气严重炭化
南江沙滩川北筇竹寺组>21041(1.00~4.78)/3.16271.16~272.580.73~0.80(3.52~3.69)/3.60严重炭化
广元东溪河川西北筇竹寺组>500>170(1.74~3.43)/2.81241.34~244.181.10~1.42(4.04~4.42)/4.32严重炭化
JT1川西北筇竹寺组3747 045~7 41970.1~0.8>3.7%严重炭化
绵阳锄巴沟川西麦地坪组>80>10264.14~266.340.55~0.683.40~3.55弱炭化

图5

四川盆地及其周缘重点区块下寒武统页岩有机质激光拉曼图谱"

图6

四川盆地及其周缘下志留统龙马溪组RO分布"

图7

四川盆地及其周缘下寒武统页岩RO分布"

图8

川南西部海相页岩RO与峨眉火成岩厚度关系"

图9

长宁地区龙马溪组烃包裹体(a)长宁双河剖面气态烃包裹体,偏光镜下为黑色串珠状,伴生盐水包裹体均一温度116.0 ℃;(b)N211井含烃包裹体,灰色串珠状,伴生盐水包裹体均一温度143.0 ℃"

图10

长宁及其周边地层埋藏史"

图11

川东—鄂西地区地层埋藏史图(根据文献[28-29]修改)"

1 赵文智,李建忠,杨涛,等.中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发,2016,43(4):499-510.
ZHAO W Z,LI J Z,YANG T,et al. Geological difference and its significance of marine shale gases in south China[J]. Petroleum Exploration and Development,2016,43(4): 499-510.
2 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016,43(2): 166-178.
ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China: Characteristics, challenges and prospects(Ⅱ)[J]. Petroleum Exploration and Development,2016,43(2):166-178.
3 王玉满,李新景,陈波,等.海相页岩有机质炭化的热成熟度下限及勘探风险[J]. 石油勘探与开发,2018,45(3):385-395.
WANG Y M, LI X J, CHEN B, et al. Lower limit of thermal maturity for the carbonization of organic matter in marine shale and its exploration risk[J]. Petroleum Exploration and Development, 2018, 45(3): 385-395.
4 王玉满, 董大忠, 程相志, 等. 海相页岩有机质碳化的电性证据及其地质意义: 以四川盆地南部地区下寒武统筇竹寺组页岩为例[J]. 天然气工业, 2014, 34(8): 1-7.
WANG Y M, DONG D Z, CHENG X Z, et al. Electric property evidences of the carbonification of organic matters in marine shales and its geologic significance: A case study of the Lower Cambrian Qiongzhusi shale in the southern Sichuan Basin[J]. Natural Gas Industry, 2014, 34(8): 1-7.
5 刘德汉,肖贤明,田辉,等.固体有机质拉曼光谱参数计算样品热演化程度方法与地质应用[J]. 科学通报, 2013, 58(13):1228-1241.
LIU D H, XIAO X M, TIAN H, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications[J]. Chinese Science Bulletin, 2013, 58(13): 1228-1241.
6 蒋珊,王玉满,王书彦,等.四川盆地川中古隆起及周缘下寒武统筇竹寺组页岩有机质石墨化区预测[J].天然气工业, 2018, 38(10): 19-27.
JIANG S, WANG Y M, WANG S Y, et al. Distribution prediction of graphitized organic matter areas in the Lower Cambrian Qiongzhusi shale in the central Sichuan paleo-uplift and its surrounding areas in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(10): 19-27.
7 王玉满,李新景,王皓,等. 中上扬子地区下志留统龙马溪组有机质碳化区预测[J]. 天然气地球科学,2020,31(2):151-162.
WANG Y M,LI X J,WANG H,et al. Prediction of organic matter carbonization zones for Lower Silurian Longmaxi Formation in Middle-Upper Yangtze region[J].Natural Gas Geoscience,2020,31(2):151-162.
8 刘绍文,王良书,李成,等. 塔里木北缘岩石圈热一流变结构及其地球动力学意义[J]. 中国科学(D辑), 2003, 33(9): 852-863.
LIU S W, WANG L S, LI C, et al. Thermal transformation structure of the lithosphere in the northern margin of Tarim and its geodynamic significance[J]. Science in China(Series D), 2003, 33(9): 852-863.
9 汪洋,程素华. 中国西部及邻区岩石圈热状态与流变学强度特征[J]. 地学前缘, 2013, 20(1): 182-189.
WANG Y,CHENG S H. Thermal state and rheological strength of the lithosphere beneath western part of China and its adjacent region[J]. Earth Science Frontiers,2013,20(1):182-189.
10 魏国齐, 贾东, 杨威, 等. 四川盆地构造特征与油气[M]. 北京:科学出版社,2019:1-136.
WEI G Q,JIA D,YANG W,et al.Structural Features and Oil & Gas in the Sichuan Basin[M].Beijing:Science Press,2019:1-136.
11 罗志立,金以钟,朱夔玉,等. 试论上扬子地台的峨眉地裂运动[J]. 地质论评, 1988, 34(1): 11-24.
LUO Z L, JIN Y Z, ZHU K Y, et al. On Emei taphrogenesis of the Upper Yangtze Platform[J]. Geological Review, 1988, 34(1): 11-24.
12 刘建清,何利,胡宇瀚, 等. 四川雷波峨眉山玄武岩岩石学及地球化学特征[J]. 地球学报,2020,41(3):325-336.
LIU J Q, HE L,HU Y H,et al.The petrological and geochemical characteristics of Emei Shan basalt in Leibo County, Sichuan Province[J].Acta Geoscientica Sinica,2020,41(3):325-336.
13 马健飞,沙小保,刘建清,等. 盐津地区峨眉山玄武岩地球化学特征及成因分析[J]. 矿物岩石, 2019, 39(2): 25-33.
MA J F, SHA X B, LIU J Q, et al. Geochemical characteristics and genesis of Emeishan basalt in Yanjin area[J]. Journal of Mineralogy Petrology,2019,39(2):25-33.
14 朱江. 峨眉山大火成岩省地幔柱动力学及其环境效应研究[D]. 北京:中国地质大学(北京),2019.
ZHU J. A Study of Mantle Plume Dynamics and It's Environmental Effect in the Emeishan Large Igneous Province[D]. Bei-jing:China University of Geosciences(Beijing), 2019.
15 李天元. 川西南峨眉山玄武岩堆积序列及岩性岩相特征[D].北京:中国地质大学(北京),2020.
LI T Y. The Accumulation Sequence and Lithologic and Lithofacies Characteristics of the Basalt in Mount Emeishan, Southwest Sichuan[D].Beijing:China University of Geosciences(Bei-jing),2020.
16 程文斌,董树义,金灿海, 等. 四川省沐川地区峨眉山玄武岩元素地球化学特征与成因探讨[J]. 矿物岩石, 2019, 39(4): 49-69.
CHENG W B, DONG S Y,JIN C H, et al. Characteristics of elemental geochemistry and petrogenesis discussion of the Emeishan basalts in Muchuan area, Sichuan Province[J]. Journal of Mineralogy and Petrology, 2019, 39(4): 49-69.
17 杨辉,马继跃,朱兵,等. 四川马边、雷波地区峨眉山玄武岩地球化学特征及其成因[J]. 四川地质学报,2018,38(1):27-38.
YANG H, MA J Y, ZHU B, et al. Geochemical characteristics and genesis of the Emeishan basalt in the Mabian-Leibo region,Sichuan[J].Acta Geologica Sichuan,2018,38(1):27-38.
18 周叔齐.云南昭通威信地区玄武岩的地球化学特征及其尖灭边界研究[D]. 桂林:桂林理工大学, 2019.
ZHOU S Q. Geological,Geochemical Characteristics and Its Boundary of Basalts in Weixin Area,Yunnan[D]. Guilin:Guilin University of Technology, 2019.
19 王玉满,沈均均,邱振,等. 中上扬子地区下寒武统筇竹寺组结核体发育特征及沉积环境意义[J]. 天然气地球科学,2021,32(9):1308-1323.
WANG Y M,SHEN J J,QIU Z,et al. Characteristics and environmental significance of concretion in the Lower Cambrian Qiongzhusi Formation in the Middle-Upper Yangtze area[J].Natural Gas Geoscience,2021,32(9):1308-1323.
21 PIANE C D, BOURDET J, JOSH M, et al. Organic matter network in postmature Marcellus shale: Effects on petrophysical properties[J]. AAPG Bulletin,2018,102(11):2305-2332.
20 王玉满, 李新景, 董大忠, 等. 四川盆地及周缘志留系页岩典型剖面地质特征[M]. 北京:石油工业出版社, 2021:1-310.
WANG Y M, LI X J, DONG D Z, et al. Geologic Characteristics of Type Section of Silurian Shale in the Sichuan Basin and Its Adjacent Areas[M].Beijing:Petroleum Industry Press, 2021: 1-310.
22 SPOÈTL C, HOUSEKNECHT D W, JAQUES R C. Kerogen maturation and incipient graphitization of hydrocarbon source rocks in the Arkoma Basin, Oklahoma and Arkansas: A combined petrographic and Raman spectrometric study[J]. Organic Geochemistry, 1998, 28(9-10): 535-542.
23 徐义刚,何斌,罗震宇,等. 我国大火成岩省和地幔柱研究进展与展望[J]. 矿物岩石地球化学通报, 2013, 32(1): 25-39.
XU Y G,HE B,LUO Z Y,et al. Study on mantle plume and large igneous provinces in China: An overview and perspectives[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2013, 32(1): 25-39.
24 何斌,徐义刚,肖龙,等. 峨眉山大火成岩省的形成机制及空间展布:来自沉积地层学的新证据[J]. 地质学报, 2003, 77(2): 194-202.
HE B,XU Y G,XIAO L, et al. Generation and spatial distribution of the Emeishan Large Igneous Province: New evidence from stratigraphic records[J]. Acta Geologica Sinica, 2003,77(2):194-202.
25 彭浩,尹成,何青林,等.川西地区二叠系热碎屑流火山岩发育特征及其油气地质意义[J]. 石油勘探与开发, 2022, 49(1):56-67.
PENG H,YIN C, HE Q L, et al. Development characteristics and petroleum geological significance of Permian pyroclastic flow volcanic rocks in western Sichuan Basin, SW China[J]. Petroleum Exploration and Development,2022,49(1):56-67.
26 王一刚,余晓锋,杨雨,等. 流体包裹体在建立四川盆地古地温剖面研究中的应用[J]. 地球科学(中国地质大学学报), 1998, 23(3):285-288.
WANG Y G,YU X F,YANG Y,et al.Applications of fluid in-clusions the paleo-geotemperature in Sichuan Basin[J]. Earth Science (Journal of China University of Geosciences),1998,23(3):285-288.
27 LIU W, QIU N,XU Q,et al. Precambrian temperature and pressure system of Gaoshiti-Moxi block in the central paleo-uplift of Sichuan Basin,southwest China[J].Precambrian Rese-arch, 2018, 313: 91-108.
28 刘成林,李景明,蒋裕强,等. 川东小河坝砂岩天然气成藏地球化学研究[J]. 西南石油学院学报,2002,24(1):46-50.
LIU C L, LI J M, JIANG Y Q, et al. Geochemistry research of natural gas reservoir formation of Xiaoheba Fm of Lower Silurian in the eastern Sichuan Basin[J]. Journal of Southwest Petroleum Institute, 2002, 24(1): 46-50.
29 曹环宇, 朱传庆, 邱楠生. 川东地区古生界主要泥页岩最高古温度特征[J]. 地球物理学报,2016,59(3):1017-1029.
CAO H Y, ZHU C Q, QIU N S. Maximum paleotemperature of main Paleozoic argillutite in the eastern Sichuan Basin[J]. Chinese Journal of Geophysics,2016,59(3):1017-1029.
[1] 刘强,鲁雪松,范俊佳,柳少波,马行陟,戴博凯,桂丽黎,陈玮岩. 四川盆地震旦系气藏TSR证据及控制因素[J]. 天然气地球科学, 2022, 33(6): 929-943.
[2] 周晓峰, 李熙喆, 郭伟, 张晓伟, 梁萍萍, 于均民. 四川盆地五峰组—龙马溪组页岩储层中碳酸盐矿物特征、形成机制及对储层物性影响[J]. 天然气地球科学, 2022, 33(5): 775-788.
[3] 王蓓, 彭先, 李骞, 王娟, 冯曦, 佘娟, 李滔, 蔡珺君. 川西北栖霞组超深层气藏储渗类型及开发响应模式[J]. 天然气地球科学, 2022, 33(4): 520-532.
[4] 胡欣, 王宇峰, 裴森奇, 曾琪, 李荣容, 龙虹宇, 李唐律, 周思宇, 孙海涛. 川西北地区中二叠统茅口组沉积演化及其对岩溶储层发育的控制[J]. 天然气地球科学, 2022, 33(4): 572-587.
[5] 许晗,刘明洁,张庄,叶素娟,杨映涛,伍玲,张玲,南红丽,谭秀成,曾伟,连承波. 四川盆地川西坳陷须家河组三段致密砂岩储层成岩作用及孔隙演化[J]. 天然气地球科学, 2022, 33(3): 344-357.
[6] 王伟,任丽梅,梁家驹,唐松,袁海锋,李昱翰. 川中地区中二叠统海相烃源岩特征及生烃潜力评价[J]. 天然气地球科学, 2022, 33(3): 369-380.
[7] 刘嘉伟,赵虎,王轶,张文锦,陈康,邸志欣. 川东龙会场—龙门地区二叠系火山岩分布特征及油气地质意义[J]. 天然气地球科学, 2022, 33(3): 381-395.
[8] 朱永进, 郑剑锋, 刘玲利, 冯光, 吴凤, 闫磊, 张天付. 塔里木盆地下寒武统吾松格尔组沉积期岩相古地理与勘探意义[J]. 天然气地球科学, 2022, 33(1): 1-12.
[9] 方镕慧, 刘晓强, 张聪, 李美俊, 夏响华, 黄志龙, 杨程宇, 韩秋雅, 汤韩琴. 温度压力耦合作用下的页岩气吸附分子模拟[J]. 天然气地球科学, 2022, 33(1): 138-152.
[10] 倪云燕, 姚立邈, 隋建立, 陈建平. 页岩气压裂返排液/采出水同位素地球化学特征与鉴别指标[J]. 天然气地球科学, 2022, 33(1): 78-91.
[11] 王玉满, 沈均均, 邱振, 李新景, 张磊夫, 张琴, 王灿辉. 中上扬子地区下寒武统筇竹寺组结核体发育特征及沉积环境意义[J]. 天然气地球科学, 2021, 32(9): 1308-1323.
[12] 马石玉, 谢武仁, 杨威, 段书府, 汪泽成, 武赛军, 苏楠, 郝翠果, 王小丹. 四川盆地及其周缘下寒武统沧浪铺组下段岩相古地理特征[J]. 天然气地球科学, 2021, 32(9): 1324-1333.
[13] 李亚丁, 陈友莲, 严威, 代瑞雪, 郗诚, 和源. 四川盆地寒武系沧浪铺组沉积演化特征[J]. 天然气地球科学, 2021, 32(9): 1334-1346.
[14] 李剑, 王晓波, 侯连华, 陈昌, 国建英, 杨春龙, 王义凤, 李志生, 崔会英, 郝爱胜, 张璐. 四川盆地页岩气地球化学特征及资源潜力[J]. 天然气地球科学, 2021, 32(8): 1093-1106.
[15] 吴小奇, 陈迎宾, 王彦青, 曾华盛, 蒋小琼, 胡烨. 四川盆地川西坳陷成都大气田致密砂岩气地球化学特征[J]. 天然气地球科学, 2021, 32(8): 1107-1116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!