天然气地球科学 ›› 2022, Vol. 33 ›› Issue (7): 1144–1154.doi: 10.11764/j.issn.1672-1926.2022.01.015

• 非常规天然气 • 上一篇    下一篇

海陆过渡相页岩力学特征及破坏模式——以鄂尔多斯盆地东缘二叠系山西组为例

张文1(),吴建军2,刘向君1(),李兵2,梁利喜1,熊健1   

  1. 1.西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
    2.中石油煤层气有限责任公司,北京 100028
  • 收稿日期:2021-09-15 修回日期:2022-02-21 出版日期:2022-07-10 发布日期:2022-07-11
  • 通讯作者: 刘向君 E-mail:swpuzhangwen@qq.com;liuxiangjunswpi@163.com
  • 作者简介:张文(1993-),男,四川南充人,博士研究生,主要从事石油工程岩石力学研究.E-mail:swpuzhangwen@qq.com.
  • 基金资助:
    中国石油—西南石油大学创新联合体科技合作项目(2020CX030201)

Mechanical characteristics and failure mode of marine-continent transitional facies shale:Case study of Permian Shanxi Formation in the eastern margin of Ordos Basin, NW China

Wen ZHANG1(),Jianjun WU2,Xiangjun LIU1(),Bing LI2,Lixi LIANG1,Jian XIONG1   

  1. 1.State Key Lab of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
    2.PetroChina Coalbed Methane Company Limited, Beijing 100028, China
  • Received:2021-09-15 Revised:2022-02-21 Online:2022-07-10 Published:2022-07-11
  • Contact: Xiangjun LIU E-mail:swpuzhangwen@qq.com;liuxiangjunswpi@163.com
  • Supported by:
    The Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(2020CX030201)

摘要:

鄂尔多斯盆地东缘二叠系山西组是目前中国页岩气勘探开发的重要接替层位,研究储层页岩力学破坏特征是页岩地质精细评价和后续压裂施工方案制定的基础内容。在对山西组页岩样品开展矿物组成分析、沉积构造特征描述、岩石力学测试的基础上,明确了主要岩相类型及其力学特征,分析了储层岩石力学破坏特征的影响因素。结果表明:山西组页岩主要矿物为石英和黏土质矿物,可划分为硅质页岩、硅质黏土质页岩和黏土质页岩,储层页岩具有力学强度变化范围大、整体低值的特点。受控于岩相的影响,硅质页岩和硅质黏土质页岩力学强度和弹性模量强于黏土质页岩。纹层、充填裂纹以及生物碎屑等结构和构造,增大了力学非均质性,也容易影响裂缝的传播路径。巴西圆盘劈裂实验表明山西组页岩纹层和泥质条带对裂缝具有极强的捕获作用,容易导致裂缝沿着纹层和泥质条带扩展。围压降低了页岩的脆性,使页岩由劈裂破坏转换为剪切破坏,并伴随着充填裂纹和泥质条带的破坏,呈现出破坏形态由沉积构造和围压双重控制的模式,复杂的破坏模式有利于减弱页岩气开发过程中储层裂缝网络渗透率的应力敏感性。研究成果为后续水平井布井选层和压裂施工方案制定提供了借鉴。

关键词: 海陆过渡相, 页岩岩相, 矿物含量, 力学特征, 破坏模式

Abstract:

The Permian Shanxi Formation in the eastern margin of the Ordos Basin is currently an important superseding stratum for the exploration and development of shale gas in China. The failure characteristics of rock mechanics are the basic content of the research for the fine evaluation of shale geology and the formulation of subsequent fracturing construction plans. Based on the mineral composition, sedimentary structure and rock mechanics test of shale samples, the main lithofacies types and their mechanical characteristics are clarified, and the factors affecting the rock mechanical properties are analyzed. The results show that the dominant minerals in the Shanxi Formation shale are quartz and clay minerals. Based on this, the shale can be divided into siliceous shale, siliceous clay shale and clay shale, with the characteristics of wide range of mechanical strength and of low value as a whole. Controlled by the lithofacies type, siliceous shale and siliceous clay shale have stronger mechanical strength and elastic modulus than clay shale. Structures such as laminae, filling cracks, and biological debris increase the mechanical heterogeneity and easily affect the propagation path of the cracks. The Brazilian disk splitting experiment shows that the shale lamina and argillaceous bands of Shanxi Formation have a strong trapping effect on fractures, and it is easy to cause the fractures to expand along the lamina and argillaceous bands. Confining pressure reduces the brittleness of shale, which converts shale from splitting failure to shear failure, accompanied by the destruction of filling cracks and argillaceous bands. It presents a mode in which the damage morphology is controlled by both sedimentary structure and confining pressure. The complex failure mode is beneficial to reduce the stress sensitivity of the permeability of the reservoir fracture network during the shale gas development process. The research results provide a reference for subsequent horizontal well layout selection and fracturing construction plan formulation.

Key words: Marine-continent transitional facies, Shale facies, Mineral content, Mechanical characteristics, Failure modes

中图分类号: 

  • TE122.2

图1

页岩矿物组成及岩相划分"

图2

页岩岩相在测井剖面分布特征"

图3

研究区块山西组典型页岩岩心照片(a)黏土质页岩,见炭化植物碎屑;(b)硅质黏土质页岩,见钙质充填裂纹;(c)硅质页岩,粉砂质与泥质纹层条带交互;(d)线切割制备实验样品过程;(e)黏土质页岩样品,见细裂纹,未充填,与层理呈一定夹角发育;(f)黏土质页岩样品易断开,断口见炭化植物叶片;(g)与样品平行发育充填裂纹;(h)硅质黏土质页岩,不含沉积构造特征;(i)与样品垂直发育的裂纹"

图4

页岩应力—应变曲线"

图5

不同岩相岩样力学参数对比柱状图"

图6

页岩样品三轴压缩实验后照片"

图7

页岩样品巴西劈裂实验后照片"

图8

岩石样品典型破坏模式"

图9

破裂岩心在不同围压下渗透率特征"

表1

不同破坏模式下岩石样品的渗透率损害评价结果"

序号破坏模式破坏前渗透率 /(10-3 μm2破坏后渗透率 /(10-3 μm2

最大渗透率

损害率/%

不可逆渗透率

损害率/%

渗透率损害方程拟合系数
abc
1劈裂破坏0.000 20.61482.3379.12212.622.0781.47
2剪切破坏0.003 83.83195.4392.23179.483.2195.77
3剪切劈裂复合破坏0.002 44.51791.7572.56145.344.3992.20

图10

不同破坏模式下渗透率对比柱状图"

1 董大忠, 邱振,张磊夫, 等.海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报, 2021, 39(1): 29-45.
DONG D Z, QIU Z, ZHANG L F, et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica,2021,39(1):29-45.
2 SUN Z P, WANG Y L,WEI Z F, et al. Characteristics and origin of desorption gas of the Permian Shanxi Formation shale in the Ordos Basin, China[J]. Energy Exploration & Exploitation, 2017, 35(6): 792-806.
3 赵文智, 贾爱林, 位云生, 等. 中国页岩气勘探开发进展及发展展望[J]. 中国石油勘探, 2020, 25(1): 31-44.
ZHAO W Z,JIA A L, WEI Y S, et al. Progress in shale gas exploration in China and prospects for future development[J]. China Petroleum Exploration, 2020, 25(1): 31-44.
4 LI F L, WANG M Z, LIN S B, et al. Pore characteristics and influencing factors of different types of shales[J]. Marine and Petroleum Geology,2019,102:391-401.
5 谷渊涛, 李晓霞, 万泉, 等. 泥页岩有机质孔隙差异特征及影响因素分析——以我国典型海相、陆相、过渡相储层为例[J]. 沉积学报, 2021, 39(4): 794-810.
GU Y T, LI X X, WAN Q, et al. On the different characteristics of origanic pores in shale and their influencing factors: Taking typical marine,continental,and transitional facies reserviors in China as examples[J]. Acta Sedimentologica Sinica, 2021, 39(4): 794-810.
6 何燚, 唐玄, 单衍胜, 等. 四川盆地及其周缘典型地区龙潭组页岩岩相划分对比及特征[J]. 天然气地球科学, 2021, 32(2): 174-190.
HE Y, TANG X, SHAN Y S, et al. Lithofacies division and comparison and characteristics of Longtan Formation shale in typical areas of Sichuan Basin and its surrounding[J]. Natural Gas Geoscience, 2021, 32(2):174-190.
7 尹开贵, 张朝, 单长安, 等. 昭通国家级页岩气示范区海陆过渡相页岩气的地质特征与资源潜力[J].天然气工业,2021,41(S1):30-35.
YIN K G, ZHANG Z, SHAN C A, et al. Geological characteristics and resource potential of the transitional shale gas in the Zhaotong national shale gas demonstration area[J]. Natural Gas Industry, 2021, 41(S1): 30-35.
8 陈洪德, 李洁, 张成弓, 等. 鄂尔多斯盆地山西组沉积环境讨论及其地质启示[J]. 岩石学报, 2011, 27(8): 2213-2229.
CHEN H D, LI J, ZHANG C G, et al. Discussion of sedimentary environment and its geological enlightenment of Shanxi Formation in Ordos Basin[J]. Acta Petrologica Sinica, 2011, 27(8): 2213-2229.
9 武瑾, 王红岩, 施振生, 等. 海陆过渡相黑色页岩优势岩相类型及成因机制——以鄂尔多斯盆地东缘二叠系山西组为例[J]. 石油勘探与开发, 2021, 48(6): 1-13.
WU J, WANG H Y, SHI Z S, et al. Favorable lithofacies types and genesis of marine-continental transitional black shale: A case study of Permian Shanxi Formation in the eastern margin of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(6): 1-13.
10 彭思钟, 刘德勋, 张磊夫, 等.鄂尔多斯盆地东缘大宁—吉县地区山西组页岩岩相与沉积相特征[J]. 沉积学报, 2022, 40(1): 47-59.
PENG S Z,LIU D X,ZHANG L F,et al.Shale lithofacies and sedimentary facies of the Permian Shanxi Formation, Daning-Jixian area,eastern margin of Ordos Basin[J]. Acta Sedimen-tologica Sinica,2022,40(1):47-59.
11 XUE C Q, WU J G, QIU L W, et al. Lithofacies classification and its controls on the pore structure distribution in Permian transitional shale in the northeastern Ordos Basin,China[J].Journal of Petroleum Science and Engineering,2020,195:107657.
12 袁余洋, 李虎, 王瑛, 等. 页岩岩相类型对裂缝形成及演化的影响研究——以黔西北地区龙马溪组为例[J]. 地质科学, 2021, 56(1): 82-97.
YUAN Y Y, LI H, WANG Y, et al. Study on the influence of lithofacies types on the formation and evolution of fracture: A case study of Longmaxi Formation in northwest Guizhou[J]. Chinese Journal of Geology, 2021, 56(1): 82-97.
13 沈骋, 任岚, 赵金洲, 等.页岩岩相组合划分标准及其对缝网形成的影响——以四川盆地志留系龙马溪组页岩为例[J]. 石油与天然气地质, 2021, 42(1): 98-106,123.
SHEN C, REN L, ZHAO J Z, et al. Division of shale lithofacies associations and their impact on fracture network formation in the Silurian Longmaxi Formation, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(1): 98-106,123.
14 梁利喜, 庄大琳, 刘向君, 等. 龙马溪组页岩的力学特性及破坏模式研究[J]. 地下空间与工程学报,2017,13(1):108-116.
LIANG L X, ZHUANG D L, LIU X J, et al. Study on mechanical properties and failure modes of Longmaxi shale[J]. Chinese Journal of Underground Space and Engineering,2017, 13(1): 108-116.
15 SHI X, JIANG S, LU S F, et al. Investigation of mechanical properties of bedded shale by nanoindentation tests: A case study on Lower Silurian Longmaxi Formation of Youyang area in southeast Chongqing, China[J] Petroleum Exploration and Development, 2019, 46(1): 163-172.
16 崔春兰, 董振国, 吴德山. 湖南保靖区块龙马溪组岩石力学特征及可压性评价[J]. 天然气地球科学, 2019, 30(5): 626-634.
CUI C L, DONG Z G, WU D S. Rock mechanics study and fracability evaluation for Longmaxi Formation of Baojing block in Hunan Province[J]. Natural Gas Geoscience,2019,30(5): 626-634.
17 王斌,邓继新,刘喜武,等. 矿物组分对龙马溪组页岩动、静态弹性特征的影响[J].地球物理学报,2019,62(12):4833-4845.
WANG B, DENG J X, LIU X W, et al. The influence of rock composition on dynamic and static elastic properties of Longmaxi Formation shales[J]. Chinese Journal of Geophysics, 2019, 62(12): 4833-4845.
18 罗诚. 硬脆性泥页岩组构及其对力学特征影响研究[D]. 成都:西南石油大学, 2013: 54-59.
LUO C. Research on Hard-brittle Shale Fabric and Its Effect on Mechanical Characteristics[D]. Chengdu:Southwest Petroleum University, 2013: 54-59.
19 GUNSALLUS K L,KULHAWY F H. A comparative evaluation of rock strength measures[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics,1984,21(5):233-248.
20 刘齐,陈强,孙中光, 等. 煤层不同类型裂缝应力敏感性实验——以阜新盆地煤样为例[J].天然气地球科学,2021,32(3):437-446.
LIU Q, CHEN Q, SUN Z G, et al. Stress sensitivity of coal seam with different fractures: Case study of Fuxin Basin[J]. Natural Gas Geoscience, 2021,32(3):437-446.
[1] 高丽军,吴鹏,石雪峰,李勇,逄建东,杨铁梅. 海陆过渡相不同源储类型页岩储层关键参数测井识别及分类方法[J]. 天然气地球科学, 2022, 33(7): 1132-1143.
[2] 张琴,邱振,张磊夫,王玉满,肖玉峰,刘丹,刘雯,李树新,李星涛. 海陆过渡相页岩气储层特征与主控因素——以鄂尔多斯盆地大宁—吉县区块二叠系山西组为例[J]. 天然气地球科学, 2022, 33(3): 396-407.
[3] 梁岳立,葛家旺,赵晓明,张喜,李树新,聂志宏. 鄂尔多斯盆地东缘山西组2段海陆过渡相页岩高分辨率层序划分及勘探地质意义[J]. 天然气地球科学, 2022, 33(3): 408-417.
[4] 王以城,张磊夫,邱振,彭思钟,封从军,孙萌思. 鄂尔多斯盆地东缘二叠系山23亚段海陆过渡相页岩岩相类型与储层发育特征[J]. 天然气地球科学, 2022, 33(3): 418-430.
[5] 马元稹,王猛,李嘉敏,赵健光,贾腾飞,朱俊卿. 沁水盆地上古生界煤系页岩储层特征和含气性[J]. 天然气地球科学, 2022, 33(3): 441-450.
[6] 谢卫东,王猛,王华,段宏跃. 海陆过渡相页岩气储层孔隙多尺度分形特征[J]. 天然气地球科学, 2022, 33(3): 451-460.
[7] 李剑, 王晓波, 侯连华, 陈昌, 国建英, 杨春龙, 王义凤, 李志生, 崔会英, 郝爱胜, 张璐. 四川盆地页岩气地球化学特征及资源潜力[J]. 天然气地球科学, 2021, 32(8): 1093-1106.
[8] 何燚, 唐玄, 单衍胜, 刘光祥, 谢皇长, 马子杰. 四川盆地及其周缘典型地区龙潭组页岩岩相划分对比及特征[J]. 天然气地球科学, 2021, 32(2): 174-190.
[9] 刘世明, 唐书恒, 霍婷, 谭富荣, 刘达成, 王金喜. 柴达木盆地东缘上石炭统泥页岩孔隙结构及分形特征[J]. 天然气地球科学, 2020, 31(8): 1069-1081.
[10] 曹香妮,姜振学,朱德宇,仇恒远,陈磊,罗东东,双子俊,李维邦. 川东北地区自流井组陆相页岩岩相类型及储层发育特征[J]. 天然气地球科学, 2019, 30(12): 1782-1793.
[11] 刘虎, 曹涛涛, 戚明辉, 王东强, 邓模, 曹清古, 程斌, 廖泽文. 四川盆地东部华蓥山地区龙潭组页岩气储层特征[J]. 天然气地球科学, 2019, 30(1): 11-26.
[12] 马东民,李沛,张辉,李卫波,杨甫. 长焰煤中镜煤与暗煤吸附/解吸特征对比[J]. 天然气地球科学, 2017, 28(6): 852-862.
[13] 郗兆栋,唐书恒,李俊,李雷. 沁水盆地中东部海陆过渡相页岩孔隙结构及分形特征[J]. 天然气地球科学, 2017, 28(3): 366-376.
[14] 邹才能, 赵群, 董大忠, 杨智, 邱振, 梁峰, 王南, 黄勇, 端安详, 张琴, 胡志明. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781-1796.
[15] 董大忠, 王玉满, 黄旭楠, 张晨晨, 管全中, 黄金亮, 王淑芳, 李新景. 中国页岩气地质特征、资源评价方法及关键参数[J]. 天然气地球科学, 2016, 27(9): 1583-1601.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 任岚, 吴建军, 林然, 赵金洲, 谭秀成, 吴建发, 宋毅. 基于数值岩心重构模型的页岩渗透率影响机制分析[J]. 天然气地球科学, 2022, 33(4): 495 -511 .
[2] 樊怀才, 张鉴, 岳圣杰, 胡浩然. 页岩气平台式井组井间干扰影响因素分析及井距优化[J]. 天然气地球科学, 2022, 33(4): 512 -519 .
[3] 王蓓, 彭先, 李骞, 王娟, 冯曦, 佘娟, 李滔, 蔡珺君. 川西北栖霞组超深层气藏储渗类型及开发响应模式[J]. 天然气地球科学, 2022, 33(4): 520 -532 .
[4] 何海清,梁世君,郭绪杰,罗劝生,王居峰,陈旋,杨帆,肖冬生,张华. 吐哈盆地洼陷区中下侏罗统岩性油气藏风险勘探新发现及勘探前景[J]. 天然气地球科学, 2022, 33(7): 1025 -1035 .
[5] 曲希玉,苗长盛,李瑞磊,朱建峰,徐文,刘英男. 致密碎屑岩储层物性影响因素及优质储层主控因素——以松辽盆地长岭断陷龙凤山次凹营城组为例[J]. 天然气地球科学, 2022, 33(7): 1036 -1048 .
[6] 郭飞飞. 南襄盆地南阳凹陷古近系核桃园组三段储层流体包裹体特征与成藏期次[J]. 天然气地球科学, 2022, 33(7): 1049 -1059 .
[7] 李旋,赵俊峰,王迪,胡超,赵旭东,王科,管斌,张海龙. 柴达木盆地西部地区早—中侏罗世沉积体系与古气候环境探讨[J]. 天然气地球科学, 2022, 33(7): 1060 -1073 .
[8] 杨润泽,刘海涛,李宏军,赵长毅,李传明. 渤海湾盆地黄骅坳陷深部煤系地层油气成藏机理与模式[J]. 天然气地球科学, 2022, 33(7): 1074 -1090 .
[9] 何建华,李勇,邓虎成,唐建明,王园园. 基于多元力学实验的深层页岩气储层脆性影响因素分析与定量评价[J]. 天然气地球科学, 2022, 33(7): 1102 -1116 .
[10] 马军,房大志,张培先,谷红陶,胡春锋,卢比,程轶妍,高全芳,万静雅. 渝东南地区阳春沟构造带五峰组—龙马溪组页岩构造裂缝特征及形成期次解析[J]. 天然气地球科学, 2022, 33(7): 1117 -1131 .