天然气地球科学 ›› 2022, Vol. 33 ›› Issue (5): 789–798.doi: 10.11764/j.issn.1672-1926.2022.01.011

• 非常规天然气 • 上一篇    下一篇

四川盆地南部双龙—罗场地区龙马溪组构造裂缝特征及形成期次

陈丽清1(),伍秋姿1,范存辉2(),钟可塑1,杨雪1,何亮1   

  1. 1.中国石油西南油气田分公司页岩气研究院,四川 成都 610051
    2.西南石油大学地球科学与技术学院,四川 成都 610500
  • 收稿日期:2021-08-06 修回日期:2022-01-19 出版日期:2022-05-10 发布日期:2022-05-12
  • 通讯作者: 范存辉 E-mail:chenlq28@petrochina.com.cn;fanchswpi@163.com
  • 作者简介:陈丽清(1987-),女,四川简阳人,工程师,主要从事页岩气勘探开发与地质评价研究.E-mail:chenlq28@petrochina.com.cn.
  • 基金资助:
    中国石油重大工程技术现场试验项目“深层页岩气地质综合评价技术现场试验”(2019F-31-01)

Tectonic fracture characteristics and formation stages of Longmaxi Formation in Shuanglong-Luochang areas, southern Sichuan Basin

Liqing CHEN1(),Qiuzi WU1,Cunhui FAN2(),Kesu ZHONG1,Xue YANG1,Liang HE1   

  1. 1.Shale Gas Institute of PetroChina Southwest Oil & Gasfield Company,Chengdu 610051,China
    2.School of Geoscience and Technology,Southwest Petroleum University,Chengdu 610500,China
  • Received:2021-08-06 Revised:2022-01-19 Online:2022-05-10 Published:2022-05-12
  • Contact: Cunhui FAN E-mail:chenlq28@petrochina.com.cn;fanchswpi@163.com
  • Supported by:
    The PetroChina Major Engineering Technology Field Test Project(2019F-31-01)

摘要:

四川盆地南部双龙—罗场地区龙马溪组是深层页岩气勘探开发的重点区域,构造裂缝的发育特征及形成期次对页岩含气性及产能具有重要影响。综合运用岩心、FMI成像测井、裂缝充填物流体包裹体测试、岩石声发射实验及埋藏—热演化史分析等,对页岩构造裂缝的发育特征及形成时期开展综合研究。结果表明:龙马溪组构造裂缝主要以构造成因的高角度缝、直立缝和复合缝为主,岩心裂缝具有间距大、密度小、倾角大、充填程度高等特征;成像测井裂缝倾角与岩心具有较好的一致性,延伸方位以近EW向、NNE向和NWW向为主,次为NNW向。岩心裂缝切割关系、成像测井裂缝产状匹配关系、裂缝充填物流体包裹体测试以及岩石声发射实验均证实,双龙—罗场地区龙马溪组构造裂缝经历了3期以上的构造运动改造。结合埋藏—热演化史分析,厘定了构造裂缝的形成时期为燕山运动中晚期—喜马拉雅运动早期(78~56 Ma)、喜马拉雅运动中期(56~29 Ma)、喜马拉雅运动晚期—现今(29 Ma至今),对应的裂缝充填物流体包裹体均一温度分别为165~198 ℃、115~146 ℃、74~105 ℃。基于构造地质学原理,建立了双龙—罗场地区龙马溪组构造裂缝的成因机制。

关键词: 构造裂缝, 发育特征, 形成期次, 双龙罗场地区

Abstract:

Longmaxi Formation in Shuanglong-Luochang areas, southern Sichuan Basin is a key area for deep shale gas exploration and development. The development characteristics and formation stages of tectonic fractures have an important influence on shale gas bearing and productivity. By using core, FMI imaging logging, fracture filling fluid inclusion testing, rock acoustic emission experiments and burial thermal evolution history analysis, the development characteristics and formation period of shale structural fractures are comprehensively studied. The study results have shown that the tectonic fractures of Longmaxi Formation are mainly high angle fractures, vertical fractures and composite fractures of tectonic origin. The core fractures have the characteristics of large spacing, small density, large dip angle and high filling degree. The fracture dip angle of imaging logging is consistent with the core, and the extension orientation is mainly near EW, NNE and NWW directions, followed by NNW direction. The core fracture cutting relationship, fracture occurrence matching relationships of imaging logging, fracture filling fluid inclusion testing and rock acoustic emission experiment all confirm that the Longmaxi Formation structural fractures in Shuanglong-Luochang areas underwent more than three periods of tectonic movement transformation. Combined with the analysis of burial-thermal evolution history, it is determined that the formation periods of tectonic fractures are mid-late Yanshan Movement and early Himalayan Movement (78-56 Ma), middle Himalayan Movement (56-29 Ma) and late Himalayan Movement- present (29-0 Ma). The homogenization temperatures of the corresponding fluid inclusions are 165-198 ℃, 115-146 ℃ and 74-105 ℃, respectively. Based on the principle of structural geology, genetic mechanism of tectonic fractures in the Longmaxi Formation in Shuanglong-Luochang areas is established.

Key words: Tectonic fracture, Developmental characteristics, Formation stage, Shuanglong-Luochang areas

中图分类号: 

  • TE122.1

图1

四川盆地南部双龙—罗场地区地质图"

图2

研究区龙马溪组断裂发育特征及井位"

图3

双龙—罗场地区龙马溪组页岩岩心裂缝类型及发育特征(a)N219井,3 947.22~3 947.35 m,直立剪切缝,方解石充填;(b)N219井,3 958.26~3 958.97 m,直立剪切缝,缝面平直,方解石充填;(c)N228井,3 469.82~3 469.95 m,剪切缝,方解石全充填;(d)N221井,3 736.56~3 737.11 m,复合网状缝;(e)N221井,3 739.45~3 739.55 m,层间缝,黄铁矿方解石混合充填;(f)N219井,3 947.30~3 947.42 m,层间缝;(g)N216H21-2井,3 630.24~3 232.20 m,层间缝将岩心切割为饼块;(h)N211井,3 739.19~3 739.47 m,直立剪切缝,高角度剪切缝,方解石充填;(i)N219井,3 946.62~3 946.71 m,直立剪切缝,高角度剪切缝,方解石全充填;(j)N228井,3 468.9~3 469.07 m,直立剪切缝,方解石充填"

图4

双龙—罗场地区龙马溪组页岩岩心裂缝发育特征"

图5

基于FMI成像测井识别裂缝产状结果"

图6

双龙—罗场地区龙马溪组页岩岩心构造裂缝交切关系(a)、(d)N211井,3 739.19~3 739.47 m,高角度和直立剪切裂缝交切;(b)、(e)N219井,3 946.62~3 946.71 m,高角度和直立剪切裂缝交切;(c)、(f)N228井,3 468.90~3 469.07 m,裂缝交切"

图7

双龙—罗场地区龙马溪组页岩岩心构造裂缝充填物流体包裹体均一温度测试"

图8

双龙—罗场地区龙马溪组页岩岩心构造裂缝充填物流体包裹体均一温度对应期次(a)、(b)第一期流体包裹体均一温度为170~190 ℃,宿主矿物为裂缝中的方解石;(c)第二期流体包裹体均一温度为115~130 ℃,宿主矿物为裂缝中的方解石;(d)第三期流体包裹体均一温度为90~105 ℃,宿主矿物为裂缝中的方解石"

图9

研究区N221井龙马溪组页岩岩心样品声发射实验结果"

图10

研究区X1井埋藏—热演化历史"

图11

双龙—罗场地区龙马溪组构造裂缝发育模式(a) 燕山运动中晚期—喜马拉雅运动早期;(b) 喜马拉雅运动中期;(c) 喜马拉雅运动晚期—现今"

1 马永生,蔡勋育,赵培荣.中国页岩气勘探开发理论认识与实践[J].石油勘探与开发,2018,45(4):561-574.
MA Y S, CAI X Y, ZHAO P R. China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574.
2 邹才能,董大忠,杨桦,等.中国页岩气形成条件及勘探实践[J].天然气工业,2011,31(12):26-39.
ZOU C N, DONG D Z, YANG H, et al. Conditions of shale gas accumulation and exploration practices in China[J].Natural Gas Industry, 2011, 31(12): 26-39.
3 姜振学,宋岩,唐相路,等.中国南方海相页岩气差异富集的控制因素[J].石油勘探与开发,2020,47(3):617-628.
JIANG Z X,SONG Y,TANG X L,et al.Controlling factors of marine shale gas differential enrichment in southern China[J]. Petroleum Exploration and Development,2020,47(3):617-628.
4 郭旭升,胡东风,文治东,等.四川盆地及周缘下古生界海相页岩气富集高产主控因素——以焦石坝地区五峰组—龙马溪组为例[J].中国地质,2014,41(3):893-901.
GUO X S, HU D F,WEN Z D, et al. Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery: A case study of the Wufeng-Longmaxi formation of Jiaoshiba area[J]. Geology in China, 2014, 41(3): 893-901.
5 聂海宽,唐玄,边瑞康.页岩气成藏控制因素及中国南方页岩气发育有利区预测[J].石油学报,2009,30(4):484-491.
NIE H K, TANG X, BIAN R K. Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of south China[J].Acta Petrolei Sinica, 2009, 30(4): 484-491.
6 王允诚.裂缝性致密油气储集层[M].北京:地质出版社,1992.
WANG Y C.Fractured Tight Oil and Gas Reservoir[M]. Beijing: Geological Publishing House, 1992.
7 冯子齐,黄士鹏,吴伟,等.北美页岩气和我国煤成气发展历程对我国页岩气发展的启示[J].天然气地球科学,2016, 27(3):449-460.
FENG Z Q, HUANG S P, WU W, et al. The development history of shale gas in United States and coal-derived gas in China and enlightenment to China[J].Natural Gas Geoscien-ce,2016,27(3):449-460.
8 FAN C H, HE S, ZHANG Y, et al. Development phases and mechanisms of tectonic fractures in the Longmaxi Formation shale of the Dingshan area in southeast Sichuan Basin.China[J].Acta Geologica Sinica(English Edition),2018,92(6):2351-2366.
9 FAN C H, LI H, ZHAO S X, et al. Formation stages and evolution patterns of structural fractures in marine shale: Case study of the Lower Silurian Longmaxi Formation in the Chang-ning area of the southern Sichuan Basin[J]. Energy & Fuels, 2020, 34 (8): 9524-9539.
10 金之钧,胡宗全,高波,等.川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J].地学前缘,2016,23(1):1-10.
JIN Z J, HU Z Q, GAO B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations,southeastern Sichuan Basin[J].Earth Sci-ence Frontiers, 2016, 23(1): 1-10.
11 JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
12 FAN C H,LI H,QIN Q R,et al. Geological conditions and exploration potential of shale gas reservoir in Wufeng and Longmaxi Formation of southeastern Sichuan Basin,China[J]. Journal of Petroleum Science and Engineering,2020,191:107138.
13 JAMISON W, AZAD A. The hydraulic fracture-natural fracture network configuration in shale reservoirs: Geological limiting factors[J]. Journal of Petroleum Science and Engineering, 2017, 159: 205-229.
14 DING W, ZHU D, CAI J, et al. Analysis of the developmental characteristics and major regulating factors of fractures in marine-continental transitional shale-gas reservoirs: A case study of the Carboniferous-Permian strata in the southeastern Ordos Basin, central China[J]. Marine and Petroleum Geology, 2013, 45: 121-133.
15 周昊,陈雷,李雪松,等.川南长宁地区五峰组和龙马溪组页岩储层差异性分析[J].断块油气田,2021,28(3):289-294.
ZHOU H, CHEN L, LI X S, et al. Difference analysis of shale reservoirs of Wufeng Formation and Longmaxi Formation in Changning area,southern Sichuan[J]. Fault-Block Oil & Gas Field,2021,28(3):289-294.
16 徐政语,梁兴,王希友,等.四川盆地罗场向斜黄金坝建产区五峰组—龙马溪组页岩气藏特征[J]. 石油与天然气地质,2017,38(1):132-143.
XU Z Y, LIANG X, WANG X Y, et al. Shale gas reservoir characteristics of the Wufeng-Longmaxi formations in Huangjinba construction block of the Luochang Syncline, the Sichuan Basin[J]. Oil & Gas Geology,2017,38(1):132-143.
17 吴建发,赵圣贤,范存辉,等.川南长宁地区龙马溪组富有机质页岩裂缝发育特征及其与含气性的关系[J]. 石油学报,2021,42(4):428-446.
WU J F, ZHAO S X, FAN C H, et al. Fracture characteristics of the Longmaxi Formation shale and its relationship with gas-bearing properties in Changning area, southern Sichuan[J]. Acta Petrolei Sinica, 2021, 42(4): 428-446.
18 LI H, TANG H M, ZHENG M J. Micropore structural heterogeneity of siliceous shale reservoir of the Longmaxi Formation in the southern Sichuan Basin,China[J]. Minerals,2019, 9(9):548.
19 范存辉,李虎,钟城,等.川东南丁山构造龙马溪组页岩构造裂缝期次及演化模式[J].石油学报,2018,39(4):379-390.
FAN C H, LI H, ZHONG C, et al. Tectonic fracture stages andevolution model of Longmaxi Formation shale, Dingshan structure,Southeast Sichuan[J]. Acta Petrolei Sinica. 2018, 39(4): 379-390.
20 LI H, QIN Q R, ZHANG B J, et al. Tectonic fracture formation and distribution in ultradeep marine carbonate gas reservoirs: A case study of the Maokou Formation in the Jiulongshan Gas Field, Sichuan Basin, Southwest China[J]. Energy & Fuels, 2020, 34(11): 14132-14146.
21 郑荣才.储层裂缝研究的新方法—声发射实验[J].石油与天然气地质,1998,19(3):186-189.
ZHENG R C. A new method of studying reservoir fractures: acoustic emission experiment[J]. Oil & Gas Geology. 1998, 19(3): 186-189.
22 任丽华,林承焰. 构造裂缝发育期次划分方法研究与应用—以海拉尔盆地布达特群为例[J].沉积学报,2007,25(2):253-260.
REN L H, LIN C Y. Classification methods for development period of fractres and its application: A case study from Budate Group of Hailaer Basin[J]. Acta Sedimentologica Sinica.2007,25(2):253-260.
23 王凯,王贵文,徐渤,等.克深2井区裂缝分类及构造裂缝期次研究[J].地球物理学进展,2015,30(3):1251-1256.
WANG K, WANG G W, XU B, et al. Fracture classification and tectonic fractures in Keshen 2 well area[J].Progress in Geo-physics,2015, 30(3): 1251-1256.
24 郭正吾,邓康龄,韩永辉,等, 四川盆地形成与演化[M]. 北京:地质出版社, 1996:72-95.
GUO Z W, DENG K L, HAN Y H, et al. Formation and Evolution of Sichuan Basin[M].Beijing: Geological Publishing House,1996:72-95.
25 许效松,徐强,潘桂棠,等, 中国南大陆演化与全球古地理对比[M]. 北京:地质出版社, 1996:42-90.
XU X S, XU Q, PAN G T, et al. Evolution of South China Continent and Comparison of Global Paleogeography[M].Beijing: Geological Publishing House, 1996:42-90.
26 黄汲清,任纪舜,姜春发,等.中国大地构造及其演化[M]. 北京:科学出版社, 1980:1-124.
HUANG J Q, REN J S, JIANG C F, et al. Tectonics and Evolution of China[M]. Beijing: Science Press, 1980:1-124.
[1] 王鹏威, 张亚雄, 刘忠宝, 陈筱, 李飞, 郝景宇, 王濡岳. 四川盆地东部涪陵地区自流井组陆相页岩储层微裂缝发育特征及其对页岩气富集的意义[J]. 天然气地球科学, 2021, 32(11): 1724-1734.
[2] 邵晓州, 王苗苗, 惠潇, 王淑敏, 张晓磊, 齐亚林. 鄂尔多斯盆地盐池地区裂缝特征、形成期次及发育模式[J]. 天然气地球科学, 2021, 32(10): 1501-1513.
[3] 史超群, 王佐涛, 朱文慧, 蒋俊, 张慧芳, 周思宇, 娄洪, 左小军, 李刚, 王振鸿. 塔里木盆地库车坳陷克拉苏构造带大北地区超深储层裂缝特征及其对储层控制作用[J]. 天然气地球科学, 2020, 31(12): 1687-1699.
[4] 陈斐然, 魏祥峰, 刘珠江, 敖明冲, 燕继红. 四川盆地二叠系龙潭组页岩孔隙发育特征及主控因素[J]. 天然气地球科学, 2020, 31(11): 1593-1602.
[5] 吕文雅, 曾联波, 周思宾, 吉园园, 梁丰, 惠晨, 尉加盛. 鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素[J]. 天然气地球科学, 2020, 31(1): 37-46.
[6] 杨海军, 张荣虎, 杨宪彰, 王珂, 王俊鹏, 唐雁刚, 周露. 超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J]. 天然气地球科学, 2018, 29(7): 942-950.
[7] 李超,陈国俊,张功成,吕成福,杨海长,马明,韩银学,毕广旭. 琼东南盆地深水区东段中中新世深水扇发育特征及物源分析[J]. 天然气地球科学, 2017, 28(10): 1555-1564.
[8] 刘卫彬, 周新桂, 李世臻, 张世奇. 构造裂缝对低孔低渗储层的影响作用研究——以东濮凹陷沙三段为例[J]. 天然气地球科学, 2016, 27(11): 1993-2004.
[9] 汪剑, 崔永谦, 史今雄, 刘国平, 肖阳, 曾联波. 沁水盆地南部煤储层裂缝测井响应与参数重构[J]. 天然气地球科学, 2016, 27(11): 2086-2092.
[10] 高帅,曾联波,马世忠,何永宏,巩磊,赵向原,许文国,唐小梅. 致密砂岩储层不同方向构造裂缝定量预测[J]. 天然气地球科学, 2015, 26(3): 427-434.
[11] 王鹏威,陈筱,庞雄奇,姜振学,姜福杰,郭迎春,郭继刚,戴琦雯,文婧. 构造裂缝对致密砂岩气成藏过程的控制作用[J]. 天然气地球科学, 2014, 25(2): 185-191.
[12] 薛保山,张树林. 宽扎盆地盐岩发育特征及其与油气成藏关系[J]. 天然气地球科学, 2014, 25(2): 221-227.
[13] 徐兆辉, 胡素云, 汪泽成, 王露, 卞从胜, 钟波, 吴育林. 四川盆地须家河组大型砂岩储集体发育特征与形成机理[J]. 天然气地球科学, 2014, 25(12): 1962-1974.
[14] 商琳,戴俊生,贾开富,邹娟,孔越. 碳酸盐岩潜山不同级别构造裂缝分布规律数值模拟——以渤海湾盆地富台油田为例[J]. 天然气地球科学, 2013, 24(6): 1260-1267.
[15] 龙鹏宇, 张金川, 唐玄, 聂海宽, 刘珠江, 韩双彪, 朱亮亮 . 泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J]. 天然气地球科学, 2011, 22(3): 525-532.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张长江;潘文蕾;刘光祥;管宏林. 中国南方志留系泥质岩盖层动态评价研究[J]. 天然气地球科学, 2008, 19(3): 301 -310 .
[2] 孔祥文, 赵庆波, 孙粉锦, 李贵中, 马财林. 煤层气高产富集规律及开采特征研究新进展[J]. 天然气地球科学, 2011, 22(4): 738 -746 .
[3] 刘小平,潘继平,董清源,刘东鹰,段宏亮,李华东,董谦. 苏北地区古生界页岩气形成地质条件[J]. 天然气地球科学, 2011, 22(6): 1100 -1108 .
[4] 何新兵,宋宜树,王邦,胡永光,赵斌. 鄂尔多斯盆地红河油田水平井录井评价与测井解释差异性研究[J]. 天然气地球科学, 2013, 24(4): 842 -852 .
[5] 姚泾利,段毅,徐丽,罗安湘,邓秀芹,赵彦德,吴应忠,赵阳. 鄂尔多斯盆地陇东地区中生界古地层压力演化与油气运聚[J]. 天然气地球科学, 2014, 25(5): 649 -656 .
[6] 郑一丁,雷裕红,张立强,王香增,张丽霞,姜呈馥,程明,俞雨溪,田飞,孙兵华. 鄂尔多斯盆地东南部张家滩页岩元素地球化学、古沉积环境演化特征及油气地质意义[J]. 天然气地球科学, 2015, 26(7): 1395 -1404 .
[7] 董大忠,邹才能,戴金星,黄士鹏,郑军卫,龚剑明,王玉满,李新景,管全中,张晨晨,黄金亮,王淑芳,刘德勋,邱振. 中国页岩气发展战略对策建议[J]. 天然气地球科学, 2016, 27(3): 397 -406 .
[8] 蔡潇,王亮,靳雅夕,高玉巧,曹海虹,丁安徐. 渝东南地区页岩有机孔隙类型及特征[J]. 天然气地球科学, 2016, 27(3): 513 -519 .
[9] 潘建国,谭开俊,王国栋,尹路,曲永强. 准噶尔盆地玛湖富烃凹陷源外近源油气藏内涵与特征[J]. 天然气地球科学, 2015, 26(S1): 1 -10 .
[10] 孟昊, 任影, 钟大康, 高崇龙, 高宙, 王点, 姜杨锦丰, 李谨杰. 四川盆地东部寒武系龙王庙组地球化学特征及其古环境意义[J]. 天然气地球科学, 2016, 27(7): 1299 -1311 .