天然气地球科学 ›› 2022, Vol. 33 ›› Issue (7): 1132–1143.doi: 10.11764/j.issn.1672-1926.2022.01.007

• 非常规天然气 • 上一篇    下一篇

海陆过渡相不同源储类型页岩储层关键参数测井识别及分类方法

高丽军1(),吴鹏2,石雪峰1,李勇3,逄建东1,杨铁梅1   

  1. 1.中海油能源发展股份有限公司工程技术分公司,天津 300457
    2.中联煤层气股份有限公司,北京 100011
    3.中国矿业大学(北京)地测学院,北京 100083
  • 收稿日期:2021-09-16 修回日期:2022-01-11 出版日期:2022-07-10 发布日期:2022-07-11
  • 作者简介:高丽军(1986-),男,山西晋中人,工程师,硕士,主要从事煤层气、页岩气勘探研究.E-mail:gaolj8@cnoooc.com.cn.
  • 基金资助:
    国家自然科学基金资助项目“基于煤层气高效排采的煤粉凝聚—沉降机制研究”(42072194);“沁水盆地高煤阶煤层气井产能控制因素及增产机理研究”(U1910205)

Logging interpretation and classification method of reservoir parameters of marine continental transitional shale based on source and reservoir type

Lijun GAO1(),Peng WU2,Xuefeng SHI1,Yong LI3,Jiandong PANG1,Tiemei YANG1   

  1. 1.CNOOC EnerTech?Drilling & Production Co. ,Tianjin 300457,China
    2.China United Coalbed Methane Company Limited,Beijing 100011,China
    3.China University of Mining and Technology,College of Geoscience and Surveying Engineering,Beijing 100083,China
  • Received:2021-09-16 Revised:2022-01-11 Online:2022-07-10 Published:2022-07-11
  • Supported by:
    The National Natural Science Foundation of China(42072194)

摘要:

为完善海陆过渡相页岩储层分类方法,以鄂尔多斯盆地东缘临兴区块为例,在划分页岩源储类型基础上,结合电阻率、声波时差、补偿中子、自然伽马等常规测井和成像测井,利用页岩样品实验结果校正,优化了不同源储类型页岩的岩性、有机碳、孔隙度、含气量等关键参数测井解释模型,建立了海陆过渡相页岩气储层分类方法。结果表明:①海陆过渡相泥页岩存在砂质夹层型、灰质混积型和富有机质泥岩层理型三大类源储类型,利用声波、密度与自然伽马的3D交会图与成像测井可识别各类型岩性;②不同类型泥页岩的测井解释优化模型拟合结果显示区内页岩储层参数相对有利勘探,其中砂质夹层型页岩有机碳含量为0.25%~6.66%,孔隙度为0.10%~4.92%,含气量为0.15~4.39 m3/t,平均脆性指数为45%;灰质混积型泥页岩有机碳含量为1.98%~8.66%,孔隙度为0.31%~4.01%,含气量为0.82~3.72 m3/t,平均脆性指数为43%;富有机质层理型页岩有机碳含量在2.04%~14.53%之间,孔隙度为0.29%~5.29%,含气量为0.93~5.14 m3/t,平均脆性指数为37.54%;③建立的以源储类型为核心的 “三型九类”页岩储层分类方法具有实用性,其中I类、II类夹层型页岩和I类富有机质层理型页岩已在生产实践显现开发潜力。

关键词: 鄂尔多斯盆地, 海陆过渡相, 页岩气, 源储类型, 测井, 储层分类

Abstract:

In order to divide shale reservoir of marine-continental transitional facies, taking Linxing block on the eastern edge of Ordos Basin as an example, the logging interpretation methods of key parameters and the classification method were established, based on the classification of shale source reservoir types, combined with conventional logging and imaging logging, used the correction of shale sample experimental results. The results showed that: (1) Three types of source reservoir types were divided, which named sandstone interlayer type, lime mixed accumulation type and organic mudstone bedding type. Various types of lithology can be identified by using 3D cross plot and imaging logging of acoustic wave, density and natural gamma ray. (2) Logging interpretation of reservoir parameters is favorable for shale exploration in the work area. The organic carbon of sandstone intercalated shale was 0.25%-6.66%, the porosity was 0.10%-4.92%, the gas content was 0.15-4.39m3/t, and the average brittleness index was 45%. The organic carbon of lime mixed shale was 1.98%-8.66%, the porosity was 0.31%-4.01%, the gas content was 0.82-3.72 m3/t, and the average brittleness index was 43%; organic carbon of organic rich bedding shale was 2.04%-14.53%, porosity was 0.29%-5.29%, gas content was 0.93-5.14 m3/t, and average brittleness index was 37.54%. (3)The “three types and nine types” shale reservoir classification method with source reservoir type as the core was established and it was practical, which showed class I and class II sandwich shale and class I organic bedding rich shale had development potential in production practice.

Key words: Ordos Basin, Land-sea transition facies, Shale gas, Source and reservoir types, Well logging, Reservoir classification

中图分类号: 

  • TE132.2

图1

区域构造、地层柱状及含气显示层段(a)区域构造;(b)临兴地层柱状图及钻井发现"

图2

海陆过渡相页岩气源储类型划分"

图3

海陆过渡相泥页岩层段精细岩性测井识别方法"

图4

泥页岩层段薄砂质夹层识别方法"

图5

泥页岩层段不同有机碳含量解释方法对比"

图6

泥页岩层段流体饱和度、含气量解释结果对比"

图7

泥页岩层段可压参数解释方法"

图8

海陆过渡相泥页岩储层划分方案"

表1

以源储类型为核心的页岩气层储层划分参数标准"

类型分类级别曲线特征

含气量

/(m3/t)

TOC

/%

夹层比

/%

孔隙度

/%

脆性矿物含量/%裂缝发育程度
砂质夹层型I类

①GR:120~170 API,曲线呈指状多韵律;

②声波时差曲线与电阻率曲线不连续包络

≥1TOC>2>20≥4>60构造裂缝发育 (密度>1条/m)
II类1<TOC<2>10≥2≥45
III类0.5<TOC<1<10<2<45不发育
富有机质层理型I类声波时差曲线与电阻率曲线明显包络≥2TOC≥6不考虑≥1>30层理缝发育 (密度>1条/m)
II类≥12<TOC≤6
III类TOC≥2不发育

灰质混积型

I类

①局部存在灰质矿物,见异常高电阻

②声波时差曲线与电阻率曲线明显包络

≥2TOC≥4不考虑≥2>45不考虑
II类≥12≤TOC<4
III类1≤TOC<2≥1>30

图9

典型井L-G1井页岩层段类型、压裂层段示意"

图10

典型井L-G1井生产曲线"

1 JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin, 2007, 91(4): 475-499.
2 石强,蒋春碧,陈鹏,等.基于游离气为核心的页岩气层类型划分方法——以川南地区下志留统龙马溪组海相页岩气层为例[J].天然气工业,2021,41(2):37-46.
SHI Q, JIANG C B, CHEN P, et al.A classification method for shale gas reservoir types with free gas as the core parameter:A case study of Lower Silurian Longmaxi Formation marine shale gas reservoirs in the southern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(2):37-46.
3 罗群,吴安彬,王井伶,等. 中国北方页岩气成因类型、成气模式与勘探方向[J]. 岩性油气藏, 2019, 31(1): 1-11.
LUO Q, WU A B, WANG J L, et al. Genetic types, generation models, and exploration direction of shale gas in northern China[J]. Lithologic Reservoirs, 2019, 31(1): 1-11.
4 熊亮, 魏力民, 史洪亮. 川南龙马溪组储层分级综合评价技术及应用——以四川盆地威荣页岩气田为例[J]. 天然气工业,2019, 39(增刊1): 60-65.
XIONG L, WEI L M, SHI H L. Comprehensive evaluation technology and application of reservoir classification of Longmaxi Formation in South Sichuan Basin: A case study of Weirong shale gas field in Sichuan Basin[J]. Natural Gas Indu-stry,2019, 39(S1): 60-65.
5 朱彤, 曹艳, 张快. 美国典型页岩气藏类型及勘探开发启示[J].石油实验地质, 2014, 36(6): 718-724.
ZHU T, CAO Y, ZHANG K. Typical shale gas reservoirs in USA and enlightenment to exploration and development[J].Pe-troleum Geology and Experiment,2014,36(6):718-724.
6 谢军. 关键技术进步促进页岩气产业快速发展——以长宁—威远国家级页岩气示范区为例[J]. 天然气工业,2017,37(12):1-10.
XIE J. Rapid shale gas development accelerated by the progress in key technologies: A case study of the Changning-Weiyuan national shale gas demonstration zone[J]. Natural Gas Industry,2017, 37(12): 1-10.
7 雷丹凤, 李熙喆, 位云生, 等. 海相页岩有效产气储层特征——以四川盆地五峰组—龙马溪组页岩为例[J]. 中国矿业大学学报, 2019, 48(2): 333-343.
LEI D F, LI X Z, WEI Y S, et al. Characteristics of effective gas-producing reservoir in marine shale: A case study of the Wufeng-Longmaxi shales in Sichuan Basin[J].Journal of China University of Mining & Technology, 2019, 48(2): 333-343.
8 张金川,金之钧,袁明生. 页岩气成藏机理和分布[J]. 天然气工业,2004, 24(7): 15-18.
ZHANG J C,JIN Z J,YUAN M S.Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry,2004,24(7):15-18.
9 曹代勇,王崇敬,李靖,等.煤系页岩气的基本特点与聚集规律[J].煤田地质与勘探,2014,42(4):25-30.
CAO D Y, WANG C J, LI J, et al. Basic characteristics and accumulation rules of shale gas in coal measures[J]. Coal Geology & Explotation, 2014, 42(4): 25-30.
10 郭旭升, 胡东风, 刘若冰, 等.四川盆地二叠系海陆过渡相页岩气地质条件及勘探潜力[J]. 天然气工业,2018,38(10):11-18.
GUO X S, HU D F, LIU R B, et al. Geological conditions and exploration of Permian marine-continent transition facies shale gas in the Sichuan Basin[J]. Natural Gas Industry,2018, 38(10):11-18.
11 张吉振,李贤庆,王元,等. 海陆过渡相煤系页岩气成藏条件及储层特征:以四川盆地南部龙潭组为例[J].煤炭学报,2015,40(8):1871-1878.
ZHANG J Z, LI X Q, WANG Y, et al. Accumulation conditions and reservoir characteristics of marine-terrigenous facies coal measures shale gas from Longtan Formation in South Sichuan Basin[J].Journal of China Coal Society, 2015,40(8): 1871-1878.
12 邹才能,潘松圻,荆振华,等. 页岩油气革命及影响[J]. 石油学报,2020,41(1):1-12.
ZOU C N, PAN S Q, JING Z H, et al. Shale oil and gas revolution and its inpact[J]. Acta Petrolei Sinica,2020, 41(1):1-12.
13 易同生,包书景,陈捷,等. 黔北煤田林华矿煤系气成藏特征及开发方式[J]. 中国煤炭地质,2017,29(9):23-30.
YI T S, BAO S J, CHEN J, et al. Coal measures gas reservoiring features and exploitation pattern in Linhua coalmine, Qianbei coalfield[J]. Coal Geology of China, 2017, 29(9):23-30.
14 邓恩德,易同生,颜智华,等.海陆过渡相页岩气聚集条件及勘探潜力研究——以黔北地区金沙参1井龙潭组为例[J].中国矿业大学学报,2020,49(6):1166-1181.
DENG E D, YI T S, YAN Z H, et al. Accumulation condition and shale gas potential of the marine-terrestrial transitional facies:A case study of Jinshacan 1 Well of Longtan Formation in northerm Guizhou[J]. China University of Mining and Technology,2020,49(6):1166-1181.
15 高丽军,谢英刚,潘新志,等.临兴深部煤层气含气性及开发地质模式分析[J].煤炭学报,2018,43(6):1634-1640.
GAO L J,XIE Y G,PAN X Z,et al.Gas analysis of deep coalbed methane and its geological model for development in Linxing block[J]. Journal of China Coal Society,2018,43(6): 1634-1640.
16 谢英刚,秦勇,叶建平,等. 临兴地区上古生界煤系致密砂岩气成藏条件分析[J].煤炭学报, 2016, 41(1): 181-191.
XIE Y G, QIN Y, YE J P, et al.Accumulation conditions of tight gas in the Upper Paleozoic of Linxing block[J].Journal of China Coal Society,2016,41(1) : 181-191.
17 匡立春, 董大忠, 何文渊,等. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景[J]. 石油勘探与开发, 2020, 47(3): 435-446.
KUANG L C, DONG D Z, HE W Y, et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin,NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 435-446.
18 焦方正,邹才能,杨智.陆相源内石油聚集地质理论认识及勘探开发实践[J].石油勘探与开发,2020,47(6):1067-1078.
JIAO F Z, ZOU C N, YANG Z. Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchens[J]. Petroleum Exploration and Development, 2020,47(6):1067-1078.
19 贺聪,苏奥,张明震,等.鄂尔多斯盆地延长组烃源岩有机碳含量测井预测方法优选及应用[J]. 天然气地球科学,2016,27(4):754-764.
HE C,SU A,ZHANG M Z, et al. Optimal selection and application of prediction means for organic carbon content of source rocks based on logging data in Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience,2016,27(4):754-764.
20 杨涛涛,范国章,吕福亮,等.烃源岩测井响应特征及识别评价方法[J].天然气地球科学,2013,24(2):414-422.
YANG T T, FAN G Z, LV F L, et al. The logging features and identification methods of source rock[J]. Natural Gas Geoscience,2013,24(2):414-422.
21 闫伟林,覃豪,李洪娟.基于导电孔隙的中基性火山岩储层含气饱和度解释模型[J].吉林大学学报(地球科学版),2011,41(3):915-920.
YAN W L, QIN H, LI H J. Study on the gas saturation computation model of neutral and basic volcanic rocks reservoir based on the conductive pore[J]. Journal of Jilin University( Earth Science Edition),2011,41(3):915-920.
22 刘皓天, 李雄, 万云强, 等. 陆相页岩气形成条件及勘探开发潜力——以川东涪陵北地区侏罗系东岳庙段为例[J]. 海相油气地质, 2020, 25(2): 148-153.
LIU H T, LI X, WAN Y Q, et al. Formation conditions and exploration and development potential of continental shale gas: A case study of Jurassic Dongyuemiao Member in Fuling north area, Eastern Sichuan[J]. Marine Origin Petroleum Geology, 2020, 25(2): 148-153.
23 中国家标准化管理委员会. GB/T35110—2017海相页岩气勘探目标优选方法[S]. 北京:中国标准出版社,2017.
CHINA NATIONAL STANDARDIZING COMMITTEE. GB/T35110-2017 Target Optimization Methods for Marine Shale Gas Exploration[S]. Beijing: Standards Press of China, 2017.
24 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653.
ZOU C N, DONG D Z, WANG S J, et al. Geological characteristics,formation mechanism and resource potential of shale gas in China[J].Petroleum Exploration and Development, 2010,37(6): 641-653.
[1] 张文,吴建军,刘向君,李兵,梁利喜,熊健. 海陆过渡相页岩力学特征及破坏模式——以鄂尔多斯盆地东缘二叠系山西组为例[J]. 天然气地球科学, 2022, 33(7): 1144-1154.
[2] 熊亮, 杨振恒, 申宝剑, 卢龙飞, 魏力民, 王濡岳, 庞河清. 川南威荣地区五峰组—龙马溪组深层页岩气微观储集空间发育特征及意义[J]. 天然气地球科学, 2022, 33(6): 860-872.
[3] 李维, 张海杰, 罗彤彤, 吴伟, 蒋琳, 钟铮, 蒋裕强, 付永红, 蔡光银. 渝西地区页岩储层微观孔隙结构对页岩气赋存影响[J]. 天然气地球科学, 2022, 33(6): 873-885.
[4] 冯林杰, 蒋裕强, 武富礼, 武渝, 梁德民. 鄂尔多斯盆地延安西部地区马五1+2亚段正向低幅度构造成因及油气地质意义[J]. 天然气地球科学, 2022, 33(6): 944-954.
[5] 陈佳, 封从军, 俞天军, 陈刚, 唐明明, 孙萌思. 鄂尔多斯盆地延长气田Y113—Y133天然气井区盒8段致密储层物性下限[J]. 天然气地球科学, 2022, 33(6): 955-966.
[6] 崔晨光,张辉,刘文香,李仕芳,刘燕,宋换新,吴陈君,文志刚. 鄂尔多斯盆地东部本溪组一段泥页岩元素地球化学特征[J]. 天然气地球科学, 2022, 33(6): 1001-1012.
[7] 梁峰, 姜巍, 戴赟, 陈禹, 罗超, 张琴, 佟恺林, 胡曦, 卢斌. 四川盆地威远—资阳地区筇竹寺组页岩气富集规律及勘探开发潜力[J]. 天然气地球科学, 2022, 33(5): 755-763.
[8] 樊怀才, 张鉴, 岳圣杰, 胡浩然. 页岩气平台式井组井间干扰影响因素分析及井距优化[J]. 天然气地球科学, 2022, 33(4): 512-519.
[9] 吴建发, 赵圣贤, 张瑛堃, 夏自强, 李博, 苑术生, 张鉴, 张成林, 何沅翰, 陈尚斌. 深层页岩气储层物质组成与孔隙贡献及其勘探开发意义[J]. 天然气地球科学, 2022, 33(4): 642-653.
[10] 邹晓艳, 李贤庆, 王元, 张吉振, 赵佩. 川南地区五峰组—龙马溪组深层页岩储层特征和含气性[J]. 天然气地球科学, 2022, 33(4): 654-665.
[11] 张琴,邱振,张磊夫,王玉满,肖玉峰,刘丹,刘雯,李树新,李星涛. 海陆过渡相页岩气储层特征与主控因素——以鄂尔多斯盆地大宁—吉县区块二叠系山西组为例[J]. 天然气地球科学, 2022, 33(3): 396-407.
[12] 梁岳立,葛家旺,赵晓明,张喜,李树新,聂志宏. 鄂尔多斯盆地东缘山西组2段海陆过渡相页岩高分辨率层序划分及勘探地质意义[J]. 天然气地球科学, 2022, 33(3): 408-417.
[13] 王以城,张磊夫,邱振,彭思钟,封从军,孙萌思. 鄂尔多斯盆地东缘二叠系山23亚段海陆过渡相页岩岩相类型与储层发育特征[J]. 天然气地球科学, 2022, 33(3): 418-430.
[14] 王鹏威,刘光祥,刘忠宝,陈筱,李鹏,蔡钡钡. 川东南—黔西北地区上二叠统龙潭组海陆过渡相页岩气富集条件及主控因素[J]. 天然气地球科学, 2022, 33(3): 431-440.
[15] 马元稹,王猛,李嘉敏,赵健光,贾腾飞,朱俊卿. 沁水盆地上古生界煤系页岩储层特征和含气性[J]. 天然气地球科学, 2022, 33(3): 441-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 任岚, 吴建军, 林然, 赵金洲, 谭秀成, 吴建发, 宋毅. 基于数值岩心重构模型的页岩渗透率影响机制分析[J]. 天然气地球科学, 2022, 33(4): 495 -511 .
[2] 樊怀才, 张鉴, 岳圣杰, 胡浩然. 页岩气平台式井组井间干扰影响因素分析及井距优化[J]. 天然气地球科学, 2022, 33(4): 512 -519 .
[3] 王蓓, 彭先, 李骞, 王娟, 冯曦, 佘娟, 李滔, 蔡珺君. 川西北栖霞组超深层气藏储渗类型及开发响应模式[J]. 天然气地球科学, 2022, 33(4): 520 -532 .
[4] 何海清,梁世君,郭绪杰,罗劝生,王居峰,陈旋,杨帆,肖冬生,张华. 吐哈盆地洼陷区中下侏罗统岩性油气藏风险勘探新发现及勘探前景[J]. 天然气地球科学, 2022, 33(7): 1025 -1035 .
[5] 曲希玉,苗长盛,李瑞磊,朱建峰,徐文,刘英男. 致密碎屑岩储层物性影响因素及优质储层主控因素——以松辽盆地长岭断陷龙凤山次凹营城组为例[J]. 天然气地球科学, 2022, 33(7): 1036 -1048 .
[6] 郭飞飞. 南襄盆地南阳凹陷古近系核桃园组三段储层流体包裹体特征与成藏期次[J]. 天然气地球科学, 2022, 33(7): 1049 -1059 .
[7] 李旋,赵俊峰,王迪,胡超,赵旭东,王科,管斌,张海龙. 柴达木盆地西部地区早—中侏罗世沉积体系与古气候环境探讨[J]. 天然气地球科学, 2022, 33(7): 1060 -1073 .
[8] 杨润泽,刘海涛,李宏军,赵长毅,李传明. 渤海湾盆地黄骅坳陷深部煤系地层油气成藏机理与模式[J]. 天然气地球科学, 2022, 33(7): 1074 -1090 .
[9] 何建华,李勇,邓虎成,唐建明,王园园. 基于多元力学实验的深层页岩气储层脆性影响因素分析与定量评价[J]. 天然气地球科学, 2022, 33(7): 1102 -1116 .
[10] 马军,房大志,张培先,谷红陶,胡春锋,卢比,程轶妍,高全芳,万静雅. 渝东南地区阳春沟构造带五峰组—龙马溪组页岩构造裂缝特征及形成期次解析[J]. 天然气地球科学, 2022, 33(7): 1117 -1131 .